Plasmon-enhanced photoresponse of deep-subwavelength GaAs NW photodetector

Bang Li, Yanni Tang, Xin Yan, Xia Zhang, Yongge Liu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (7) : 385-389.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (7) : 385-389. DOI: 10.1007/s11801-021-0120-8
Article

Plasmon-enhanced photoresponse of deep-subwavelength GaAs NW photodetector

Author information +
History +

Abstract

According to optical diffraction limit, the photoresponsity of nanowire (NW)-based photodetector exponentially decreases when its NW diameter reduces to the range of deep subwavelength. In this paper, we demonstrate a photoresponse-enhanced method of the deep-subwavelength GaAs NW photodetector by using a plasmon-driven dipole antenna. Considering that the enhancement is extremely influenced by the shape and size of antenna, the structure of antenna is optimized by finite difference time domain (FDTD) solutions. The optimal structure of antenna optimizes the responsivity-enhanced factors to 1123.3 and 224.7 in NW photodetectors with NW diameters of 20 nm and 60 nm, respectively. This photoresponse-enhanced method is promising for easy-integration high-performance nanoscale photodetectors.

Cite this article

Download citation ▾
Bang Li, Yanni Tang, Xin Yan, Xia Zhang, Yongge Liu. Plasmon-enhanced photoresponse of deep-subwavelength GaAs NW photodetector. Optoelectronics Letters, 2021, 17(7): 385‒389 https://doi.org/10.1007/s11801-021-0120-8

References

[1]
KimW, DubrovskiiV G, Vukajlovic-PlestinaJ, TütüncüogluG, FrancavigliaL, GüniatL, PottsH, FriedlM, LeranJ, Fontcuberta i MorralA. Nano Lett., 2018, 18: 49
CrossRef Google scholar
[2]
García NúñezC, BrañaA F, PauJ L, GhitaD, GarcíaB J, ShenG, WilbertD S, KimS M, KungP J. Appl. Phys., 2014, 115: 034307
CrossRef Google scholar
[3]
García NúñezC, García MarínA, NanterneP, PiquerasJ, KungP, PauJ L. Nanotech., 2013, 24: 415702
CrossRef Google scholar
[4]
WangG, ZhangY, YouC, LiuB, YangY, LiH, CuiA, LiuD, YanH. Infrared Phys. Tech., 2018, 88: 149
CrossRef Google scholar
[5]
RajanN K, DavidA R, MarkA R. Appl. Phys. Lett., 2011, 98: 264107
CrossRef Google scholar
[6]
XieP, XiongQ, FangY, QingQ, LieberC M. Nat. Nanotechnol., 2012, 7: 119
CrossRef Google scholar
[7]
NúñezC G, LiuF, NavarajW T, ChristouA, ShakthivelD, DahiyaR. Microsyst. Nanoeng, 2018, 4: 1
CrossRef Google scholar
[8]
AliH, ZhangY, TangJ, PengK, SunS S, SunY, SongF, FalakA, WuS, QianC, WangM, ZuoZ, JinK. Small, 2018, 14: 01704429
CrossRef Google scholar
[9]
LuoY, YanX, ZhangJ, LiB, WuY, LuQ, JinC, ZhangX, RenX. Nanoscale, 2018, 10: 9212
CrossRef Google scholar
[10]
CammiD, RodiekB, ZimmermannK, KuckS, VossT. J. Mater. Res., 2017, 32: 2464
CrossRef Google scholar
[11]
NúñezC G, BrañaA F, LópezN, PauJ L, GarcíaB J. Nanotech., 2020, 31: 225604
CrossRef Google scholar
[12]
NägeleinA, TimmC, SchwarzburgK, SteidlM, KleinschmidtP, HannappelT. Sol. Energ. Mat. Sol. C, 2019, 197: 13
CrossRef Google scholar
[13]
BarrigónE, HultinO, LindgrenD, YadegariF, MagnussonM H, SamuelsonL, JohanssonL I M, BjörkM T. Nano Lett., 2018, 18: 2
CrossRef Google scholar
[14]
NovotnyL, HechtB, KellerO. Phys. Today, 2006, 60: 62
[15]
HauswaldC, GiuntoniI, FlissikowskiT, GotschkeT, CalarcoR, GrahnH T, GeelhaarL, BrandtO. ACS Photo., 2016, 4: 52
CrossRef Google scholar
[16]
SociC, ZhangA, BaoX Y, KimH, LoY, WangD. J. Nanosci. and Nanotech., 2010, 10: 1430
CrossRef Google scholar
[17]
ChenR, LiD, HuH, ZhaoY, WangY, WongN, WangS, ZhangY, HuJ, ShenZ, XiongQ. J. Phys. Chem. C, 2012, 116: 4416
CrossRef Google scholar
[18]
ColomboC, KrogstrupP, NygårdJ, BrongersmaM L, Fontcuberta i MorralA. New J. Phys., 2011, 13: 123026
CrossRef Google scholar
[19]
HyunJ K, LauhonL J. Nano Lett., 2011, 11: 2731
CrossRef Google scholar
[20]
ZhangX, LiuQ, LiuB, YangW, LiJ, NiuP, JiangX. J. Mater. Chem. C, 2017, 5: 4319
CrossRef Google scholar
[21]
KnightM W, GradyN K, BardhanR, HaoF, NordlanderP, HalasN J. Nano Lett., 2007, 7: 2346
CrossRef Google scholar
[22]
JeeS W, ZhouK, KimD W, LeeJ H. Nano Converg., 2014, 1: 29
CrossRef Google scholar
[23]
PolmanA, CatchpoleK R. Opt. Exp., 2008, 16: 21793
CrossRef Google scholar
[24]
CasadeiA, PecoraE F, TrevinoJ, ForestiereC, RüfferD, Russo-AverchiE, MatteiniF, TutuncuogluG, HeissM, Fontcuberta i MorralA, DalN. Nano Lett., 2014, 14: 2271
CrossRef Google scholar
[25]
TangL, KocabasS E, LatifS, OkyayA K, LygagnonD, SaraswatK C, MillerD A B. Nature Photo., 2008, 2: 226
CrossRef Google scholar
[26]
HaoE, SchatzG C. J. Chem. Phys., 2004, 120: 357
CrossRef Google scholar
[27]
CrozierK B, SundaramurthyA, KinoG S, QuateC F. J. Appl. Phys., 2003, 94: 4632
CrossRef Google scholar
[28]
HuangN, LinC, PovinelliM L. J. Appl. Phys., 2012, 112: 001948
[29]
CaoL, WhiteJ S, ParkJ S, SchullerJ A, ClemensB M, BrongersmaM L. Nature Mater., 2009, 8: 6432009
CrossRef Google scholar
[30]
SeoK, WoberM, SteinvurzelP, SchonbrunE, DanY, EllenbogenT, CrozierK. Nano Lett., 2011, 11: 1851
CrossRef Google scholar
[31]
MieG. Ann. Phys-Berlin, 2010, 330: 377
CrossRef Google scholar
[32]
MühlschlegelP, MartinO J F, HechtB, HechtB, PohlD W. Science, 2005, 308: 1607
CrossRef Google scholar
[33]
YuanZ, LiX, GuoY, HuangJ. Optoelectronics Lett., 2015, 11: 13
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/