Plasmon-enhanced photoresponse of deep-subwavelength GaAs NW photodetector

Bang Li , Yanni Tang , Xin Yan , Xia Zhang , Yongge Liu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (7) : 385 -389.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (7) : 385 -389. DOI: 10.1007/s11801-021-0120-8
Article

Plasmon-enhanced photoresponse of deep-subwavelength GaAs NW photodetector

Author information +
History +
PDF

Abstract

According to optical diffraction limit, the photoresponsity of nanowire (NW)-based photodetector exponentially decreases when its NW diameter reduces to the range of deep subwavelength. In this paper, we demonstrate a photoresponse-enhanced method of the deep-subwavelength GaAs NW photodetector by using a plasmon-driven dipole antenna. Considering that the enhancement is extremely influenced by the shape and size of antenna, the structure of antenna is optimized by finite difference time domain (FDTD) solutions. The optimal structure of antenna optimizes the responsivity-enhanced factors to 1123.3 and 224.7 in NW photodetectors with NW diameters of 20 nm and 60 nm, respectively. This photoresponse-enhanced method is promising for easy-integration high-performance nanoscale photodetectors.

Cite this article

Download citation ▾
Bang Li, Yanni Tang, Xin Yan, Xia Zhang, Yongge Liu. Plasmon-enhanced photoresponse of deep-subwavelength GaAs NW photodetector. Optoelectronics Letters, 2021, 17(7): 385-389 DOI:10.1007/s11801-021-0120-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KimW, DubrovskiiV G, Vukajlovic-PlestinaJ, TütüncüogluG, FrancavigliaL, GüniatL, PottsH, FriedlM, LeranJ, Fontcuberta i MorralA. Nano Lett., 2018, 18: 49

[2]

García NúñezC, BrañaA F, PauJ L, GhitaD, GarcíaB J, ShenG, WilbertD S, KimS M, KungP J. Appl. Phys., 2014, 115: 034307

[3]

García NúñezC, García MarínA, NanterneP, PiquerasJ, KungP, PauJ L. Nanotech., 2013, 24: 415702

[4]

WangG, ZhangY, YouC, LiuB, YangY, LiH, CuiA, LiuD, YanH. Infrared Phys. Tech., 2018, 88: 149

[5]

RajanN K, DavidA R, MarkA R. Appl. Phys. Lett., 2011, 98: 264107

[6]

XieP, XiongQ, FangY, QingQ, LieberC M. Nat. Nanotechnol., 2012, 7: 119

[7]

NúñezC G, LiuF, NavarajW T, ChristouA, ShakthivelD, DahiyaR. Microsyst. Nanoeng, 2018, 4: 1

[8]

AliH, ZhangY, TangJ, PengK, SunS S, SunY, SongF, FalakA, WuS, QianC, WangM, ZuoZ, JinK. Small, 2018, 14: 01704429

[9]

LuoY, YanX, ZhangJ, LiB, WuY, LuQ, JinC, ZhangX, RenX. Nanoscale, 2018, 10: 9212

[10]

CammiD, RodiekB, ZimmermannK, KuckS, VossT. J. Mater. Res., 2017, 32: 2464

[11]

NúñezC G, BrañaA F, LópezN, PauJ L, GarcíaB J. Nanotech., 2020, 31: 225604

[12]

NägeleinA, TimmC, SchwarzburgK, SteidlM, KleinschmidtP, HannappelT. Sol. Energ. Mat. Sol. C, 2019, 197: 13

[13]

BarrigónE, HultinO, LindgrenD, YadegariF, MagnussonM H, SamuelsonL, JohanssonL I M, BjörkM T. Nano Lett., 2018, 18: 2

[14]

NovotnyL, HechtB, KellerO. Phys. Today, 2006, 60: 62

[15]

HauswaldC, GiuntoniI, FlissikowskiT, GotschkeT, CalarcoR, GrahnH T, GeelhaarL, BrandtO. ACS Photo., 2016, 4: 52

[16]

SociC, ZhangA, BaoX Y, KimH, LoY, WangD. J. Nanosci. and Nanotech., 2010, 10: 1430

[17]

ChenR, LiD, HuH, ZhaoY, WangY, WongN, WangS, ZhangY, HuJ, ShenZ, XiongQ. J. Phys. Chem. C, 2012, 116: 4416

[18]

ColomboC, KrogstrupP, NygårdJ, BrongersmaM L, Fontcuberta i MorralA. New J. Phys., 2011, 13: 123026

[19]

HyunJ K, LauhonL J. Nano Lett., 2011, 11: 2731

[20]

ZhangX, LiuQ, LiuB, YangW, LiJ, NiuP, JiangX. J. Mater. Chem. C, 2017, 5: 4319

[21]

KnightM W, GradyN K, BardhanR, HaoF, NordlanderP, HalasN J. Nano Lett., 2007, 7: 2346

[22]

JeeS W, ZhouK, KimD W, LeeJ H. Nano Converg., 2014, 1: 29

[23]

PolmanA, CatchpoleK R. Opt. Exp., 2008, 16: 21793

[24]

CasadeiA, PecoraE F, TrevinoJ, ForestiereC, RüfferD, Russo-AverchiE, MatteiniF, TutuncuogluG, HeissM, Fontcuberta i MorralA, DalN. Nano Lett., 2014, 14: 2271

[25]

TangL, KocabasS E, LatifS, OkyayA K, LygagnonD, SaraswatK C, MillerD A B. Nature Photo., 2008, 2: 226

[26]

HaoE, SchatzG C. J. Chem. Phys., 2004, 120: 357

[27]

CrozierK B, SundaramurthyA, KinoG S, QuateC F. J. Appl. Phys., 2003, 94: 4632

[28]

HuangN, LinC, PovinelliM L. J. Appl. Phys., 2012, 112: 001948

[29]

CaoL, WhiteJ S, ParkJ S, SchullerJ A, ClemensB M, BrongersmaM L. Nature Mater., 2009, 8: 6432009

[30]

SeoK, WoberM, SteinvurzelP, SchonbrunE, DanY, EllenbogenT, CrozierK. Nano Lett., 2011, 11: 1851

[31]

MieG. Ann. Phys-Berlin, 2010, 330: 377

[32]

MühlschlegelP, MartinO J F, HechtB, HechtB, PohlD W. Science, 2005, 308: 1607

[33]

YuanZ, LiX, GuoY, HuangJ. Optoelectronics Lett., 2015, 11: 13

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/