Evaluating electron induced degradation of triple-junction solar cell by numerical simulation

Jun-wei Li, Zu-jun Wang, Cheng-ying Shi, Yuan-yuan Xue, Hao Ning, Rui Xu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 276-282.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 276-282. DOI: 10.1007/s11801-021-0107-5
Article

Evaluating electron induced degradation of triple-junction solar cell by numerical simulation

Author information +
History +

Abstract

In this paper, the degradation related parameters of GaInP/GaAs/Ge triple-junction solar cell induced by electron irradiation are carried out by numerical simulation. The degradation results of short-circuit current, open-circuit voltage, maximum power have been investigated, and the degradation mechanism is analyzed. Combining the degradation results, the degradation of normalized parameters versus displacement damage dose is obtained. The results show that the degradation increases with the increase of the electron fluence and electron irradiation energy. The degradation normalized related parameters versus displacement damage dose can be characterized by a special curve that is not affected by the type of irradiated particles. By calculating the annual displacement damage dose and the on-orbit operation time of special space orbit, the degradation of normalized parameters can be obtained with the fitting curve in the simulation. The study will provide an approach to estimate the radiation damage of triple-junction solar cell induced by space particle irradiation.

Cite this article

Download citation ▾
Jun-wei Li, Zu-jun Wang, Cheng-ying Shi, Yuan-yuan Xue, Hao Ning, Rui Xu. Evaluating electron induced degradation of triple-junction solar cell by numerical simulation. Optoelectronics Letters, 2021, 17(5): 276‒282 https://doi.org/10.1007/s11801-021-0107-5

References

[1]
WiemerM, SabnisV, YuenH. Proc. SPIE, 2011, 8108: 810804
CrossRef Google scholar
[2]
YamaguchiM. Sol. Energy Mater. Sol. Cell., 2003, 75: 261
CrossRef Google scholar
[3]
WangR, LuM, YiT C, YangK, JiX X. Chin. Phys. Lett., 2014, 31: 103
[4]
SatoS, MiyamotoH, ImaizumiM, ShimazakiK, MoriokaC, KawanoK, OhshimaT. Sol. Energy Mater. Sol. Cell., 2009, 93: 768
CrossRef Google scholar
[5]
QiJ H, HuJ M, ShengY H. Acta Phys. Sin., 2015, 64: 108802(in Chinese)
[6]
OchoaM, YaccuzziE, Espinet-GonzalezP, BarreraM, BarrigonE, IbarraM L, YedilethC, GarciaJ, LopezE, AlurraldeM, AlgoraC, GodfrinE, Rey-StolleI, PiaJ. Sol. Energy Mater. Sol. Cell., 2017, 159: 576
CrossRef Google scholar
[7]
ZhangY Q, HuoM X, WuY Y, SunC Y, ZhaoH J, GengH B, WangS, LiuR B, SunQ. Chin. Phys. B., 2017, 26: 088801
CrossRef Google scholar
[8]
YanY Y, FangM H, TangX B, ChenF D, HuangH, SunX Y, JiL L. Nucl. Instr. Meth. Phys. Res. B., 2019, 451: 49
CrossRef Google scholar
[9]
YuanZ H, LiX N, HuangJ. Optoelectronics Letters, 2013, 9: 11
[10]
XuY, HeiN M, ShenX B, AierkenA, ZhaoX F, SailaiM, LuW, TanM, WuY Y, LuS L, LiY D, GuoQ. Jpn. J. Appl. Phys., 2019, 58: 032008
CrossRef Google scholar
[11]
SongM H, WangD X, BiJ F. Acta Phys. Sin., 2017, 52: 168(in Chinese)
[12]
BourgoinJ C, ZazouiM. Semicond. Sci. Technol., 2002, 17: 453
CrossRef Google scholar
[13]
JingX, MinG, MingL, HuH, GuangY, JianwenX. Materials, 2018, 11: 944
CrossRef Google scholar
[14]
WuR, WangJ L, LingY L. Atom Energ. Sci. Technol., 2018, 69: 098802(in Chinese)
[15]
Elahidoost A, Fathipour M and Mojab A, Modelling the Effect of 1 MeV Electron Irradiation on the Performance Degradation of a Single Junction AlxGa1−xAs/GaAs Solar Cell, 2012 20th Iranian Conference on Electrical Engineering, 2012.
[16]
LeemJ M, YuJ S, KimJ N, NohS K. J. Korean Phys. Soc., 2014, 64: 1561
CrossRef Google scholar
[17]
Daniel Schiavo, 2012 Modeling Radiation Effects on a Triple Junction Solar Cell using Silvaco ATLAS (MS dissertation) (Monterey: Naval Postgraduate School).
[18]
CappellettiM A, CasasG A, MoralesD M. Semicond. Sci. Technol., 2016, 31: 115020
CrossRef Google scholar
[19]
TurowskiM, BaldT, RamanA, FedoseyevA, WarnerJ H, CressC D, WaltersR J. IEEE Trans. Nucl. Sci., 2013, 60: 2477
CrossRef Google scholar
[20]
CubasJ, PindadoS, VictoriaM. J. Power Sources, 2014, 247: 467
CrossRef Google scholar
[21]
LiuY M, SunY, RockettA. Sol. Energy Mater. Sol. Cell., 2012, 98: 124
CrossRef Google scholar
[22]
LiJ W, WangZ Z, ShiC Y. Acta Phys. Sin., 2020, 69: 098802(in Chinese)
[23]
GuoH L, ShiL F, WuY Y, SunQ, YuH, XiaoJ D, GuoB. 2018 Nucl. Instr. Meth. Phys. Res. B., 2018, 431: 1
[24]
MessengerS R, SummersG P, BurkeE A. Prog. Photovoltaics, 2001, 9: 103
CrossRef Google scholar
[25]
KhanA, YamaguchiM, DharmasoN, BourgoinJ, AndoK, TakamotoT. Jpn. J. Appl. Phys., 2002, 41: 1241
CrossRef Google scholar
[26]
MbarkiM, SunG C, BourgoinJ C. Semicond. Sci. Technol., 2002, 17: 453
CrossRef Google scholar
[27]
Silvaco Atlas User’s Manual http://www.silvaco.com.cn
[28]
Baur C, Gervasi M and Nieminen P, NIEL Dose Dependence for Solar Cell Irradiated with Electrons and Protons, Proceedings of the 14th ICATPP Conference, 692 (2013).
[29]
WuY Y, YueL, HuJ M. Acta Phys. Sin., 2011, 9: 723(in Chinese)
[30]
AnspaughB E. GaAs Solar Cell Radiation Handbook, 1996, California, JPL Publication Jet Propulsion Laboratory
[31]
ZuleegR, LehovecK. IEEE Trans. Nucl. Sci., 1980, 27: 1343
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/