2 µm noise-like mode-locked fiber laser based on non-linear optical loop mirror

Xiao-fa Wang , Hong-yang Mao , Qi-hang Liu , Dong-xin Liu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 294 -297.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 294 -297. DOI: 10.1007/s11801-021-0098-2
Article

2 µm noise-like mode-locked fiber laser based on non-linear optical loop mirror

Author information +
History +
PDF

Abstract

We report a Tm-doped noise-like mode-locked (NLML) pulsed fiber laser with a compact linear cavity which consists of dual nonlinear optical loop mirrors (NOLMs). The design of dual-NOLM shows both exceptional compactness in construction and distinct flexibility. In this laser, mode-locking can be realized through the nonlinear optical loop mirror technique. Stable noise-like mode-locked pulses with spectral bandwidth of 29.18 nm and pulse energy of 46 nJ are generated at a central wavelength of 1 999.7 nm. Our results indicate that such a simple and inexpensive structure can pave the way for the development of generating supercontinuum with desirable performance.

Cite this article

Download citation ▾
Xiao-fa Wang, Hong-yang Mao, Qi-hang Liu, Dong-xin Liu. 2 µm noise-like mode-locked fiber laser based on non-linear optical loop mirror. Optoelectronics Letters, 2021, 17(5): 294-297 DOI:10.1007/s11801-021-0098-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

QingW, Jing-hongG, TaoL, Shi-binJ. Optics Letters, 2009, 34: 3616

[2]

NelsonL E, JonesK D J, TamuraK, HausH A. Applied Physics B, 1997, 65: 277

[3]

WiseF W, ChongA, RenningerW H. Laser & Photonics Reviews, 2008, 2: 58

[4]

PawliszewskaM, MartynkienT, PrzewlikaA, SotorJ. Optics Letters, 2018, 43: 38

[5]

Xu-wuZ, Zhi-chaoL, HaoL. Applied Physics Express, 2014, 7: 042701

[6]

Xiao-faW, QingX, BinG. Optics Communications, 2019, 434: 180

[7]

YuC, ManW, Ping-huaT. Laser Physics Letters, 2014, 11: 055101

[8]

SobonG, SotorJ, MartynkienT, AbramskiK M. Optics Express, 2016, 24: 6156

[9]

Ding-yuanT, Lu-mingZ, BoZ. Optics Express, 2005, 13: 2289

[10]

TaoW, Xiao-xiJ, JieY, JianW, QiangY, Zheng-huiP, Han-shuoW. Nanoscale Advances, 2019, 1: 195

[11]

SolodyankinM A, ObraztsovaE D, LobachA S, ChernovA I, DianovE M. Optics Letters, 2008, 33: 1336

[12]

Ren-LiZ, JunW, Mei-songL, XiaL, Pei-wenG, Yin-yaoL, YanZ, Wei-qingG. Chinese Physics B, 2019, 28: 034203

[13]

Wen-xiongD, He-pingL, Chang-yongL, ChunL, Jun-weiL, ZhuangW, YongL. Optics Express, 2020, 28: 11514

[14]

GomesL A, OrsilaL, JouhtiT, OkhotnikovO G. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10: 129

[15]

Jian-fengL, Zu-xingZ, Zhong-yuanS, Hong-yuL, Yu-lianH, ZhuoL, LiuY, LinZ. Optics Express, 2014, 22: 31020

[16]

Jian-fengL, Zu-xingZ, Zhong-yuanS, Hong-yuL, YongL, Zi-junY, Cheng-boM, LinZ, TuritsynS K. Optics Express, 2014, 22: 7875

[17]

HuaW, Tuan-jieD, Yan-hongL, Jin-haiZ, Kai-jieW, Fu-yongZ, Jun-fengF, Ji-haiY, Hong-yanF, Zheng-qianL. Chinese Optics Letters, 2019, 17: 030602

[18]

BoivinetS, SébastienV, BoulletJ. Laser Physics Letters, 2020, 17: 055102

[19]

HeC, Sheng-pingC, Zong-fuJ, JingH. Optics Letters, 2016, 41: 4210

[20]

Bing-keY, Sheng-pingC, HeC, JingH. Applied Optics, 2016, 55: 8126

[21]

Xu-deW, Qin-meiL, Ai-pingL, Zhi-chaoL, MengL, Yan-fangZ. Optical Engineering, 2019, 58: 1

[22]

Shang-jingL, Jian-guoY, Wu-yiL. Laser Physics, 2019, 29: 025106

[23]

Qing-qingW, TongC, Ming-shanL, Bo-taoZ, Yong-fengL, Ke-pingC. Applied Physics Letters, 2013, 103: 011103

[24]

LeiZ, El-DamakA R, YanF, Xi-jiaG. Optics Express, 2013, 21: 12014

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/