Design and analysis of Wedge-enhanced Raman spectroscopy substrate

A-ning Ma, Wen-jing Wei, Si-chang Peng, Yue-e Li, Ke-su Cai, Zhong Wang, Xi-jiao Mu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 262-265.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 262-265. DOI: 10.1007/s11801-021-0087-5
Article

Design and analysis of Wedge-enhanced Raman spectroscopy substrate

Author information +
History +

Abstract

Here, a novel Au Wedge-enhanced Raman spectroscopy (WERS) substrate is proposed. The electric field enhancement factor and the effective mode field radius with varying geometry parameters are investigated. The proper excitation wavelength 633 nm is obtained. The practical application of WERS substrate is discussed. The Au WERS not only can provide a continuous extremely highly localized electric field as surface-enhanced Raman scattering (SERS) hotspots, but also can offer 10 orders of magnitude of SERS enhancement factor. The corresponding results reveal that WERS substrate will be widely applied in optics, biology, chemistry and other fields.

Cite this article

Download citation ▾
A-ning Ma, Wen-jing Wei, Si-chang Peng, Yue-e Li, Ke-su Cai, Zhong Wang, Xi-jiao Mu. Design and analysis of Wedge-enhanced Raman spectroscopy substrate. Optoelectronics Letters, 2021, 17(5): 262‒265 https://doi.org/10.1007/s11801-021-0087-5

References

[1]
KneippJ, KneippH, KneippK. Chemical Society Reviews, 2008, 37: 1052
CrossRef Google scholar
[2]
DoeringW E, NieS M. J. Phys. Chem. B, 2002, 106: 311
CrossRef Google scholar
[3]
YapF L, ThoniyotP, KrishnanS, KrishnamoorthyS. ACS Nano., 2012, 6: 2056
CrossRef Google scholar
[4]
MoskovitsM. Journal of Raman Spectroscopy, 2005, 36: 485
CrossRef Google scholar
[5]
Sprague-KleinE A, McAnallyM O, ZhdanovD V, ZrimsekA B, ApkarianV A, SeidemanT, SchatzG C, Van DuyneR P. Journal of the American Chemical Society, 2017, 139: 15212
CrossRef Google scholar
[6]
ZhanP, DuttaPK, WangP, SongG, DaiM, ZhaoSX, WangZG, YinP, ZhangW, DingB, KeY. ACS Nano, 2017, 11: 1172
CrossRef Google scholar
[7]
HeYH, HeR, YouEM, RadjenovicPM, SunSG, TianZQ, LiJ F, WangZH. Physical Review Letters, 2020, 125: 047401
CrossRef Google scholar
[8]
ZhaoXF, YuJ, ZhangC, ChenCS, XuSC, LiCH, LiZ, ZhangSZ, LiuA H, ManBY. Applied Surface Science, 2018, 455: 1171
CrossRef Google scholar
[9]
WangP, LiangO, ZhangW, SchroederT, XieYH. Advanced Materials, 2013, 25: 4918
CrossRef Google scholar
[10]
JiangSZ, GuoJ, ZhangC, LiCH, WangMH, LiZ, GaoSS, ChenPX, SiH P, XuSC. RSC Advances, 2017, 7: 5764
CrossRef Google scholar
[11]
Phan-QuangGC, HanX, KohCSL, SimHYF, LayCL, LeongSX, LeeYH, Pazos-PerezN, Alvarez-PueblaRA, LingXY. Accounts of Chemical Research, 2019, 52: 1844
CrossRef Google scholar
[12]
LayCL, KohC SL, WangJ, LeeYH, JiangR, YangY, YangZ, PhangIY, LingXY. Nanoscale, 2018, 10: 575
CrossRef Google scholar
[13]
HeX, WangS, LiuY, WangX. Sci. China Chem., 2019, 62: 1064
CrossRef Google scholar
[14]
MorenoE, RodrigoSG, BozhevolnyiSI, Martín-MorenoL, García-VidalFJ. Physical Review Letters, 2008, 100: 023901
CrossRef Google scholar
[15]
LiJF, AnemaJR, WandlowskiT, TianZQ. Chemical Society Reviews, 2015, 44: 8399
CrossRef Google scholar
[16]
WangZ, CaiKS, LuY, WuHN, LiYE, ZhouQG. Nanotechnology Reviews, 2019, 8: 24
CrossRef Google scholar
[17]
KalachyovaY, MaresD, LyutakovO, KostejnM, LapcakL, ŠvorčíkV. The Journal of Physical Chemistry C, 2015, 119: 9506
CrossRef Google scholar
[18]
TrivediR, SharmaY, DhawanA. Optics Express, 2015, 23: 26064
CrossRef Google scholar
[19]
MaAN, LiY E, ZhangXP. Plasmonics, 2013, 8: 769
CrossRef Google scholar
[20]
StilesPL, DieringerJA, ShahN C, Van DuyneRP. Annual Review of Analytical Chemistry, 2008, 1: 601
CrossRef Google scholar
[21]
KneippK, WangY, KneippH, PerelmanLT, ItzkanI, DasariR, FeldMS. Physical Review Letters, 1997, 78: 1667
CrossRef Google scholar
[22]
HuAJ, LvBZ, WangXS, ZhouL. Modern Physics Letters B, 2016, 30: 16500781
[23]
MakkonenL. Journal of Physics: Condensed Matter, 2016, 28: 135001

Accesses

Citations

Detail

Sections
Recommended

/