Design and analysis of Wedge-enhanced Raman spectroscopy substrate

A-ning Ma , Wen-jing Wei , Si-chang Peng , Yue-e Li , Ke-su Cai , Zhong Wang , Xi-jiao Mu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 262 -265.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 262 -265. DOI: 10.1007/s11801-021-0087-5
Article

Design and analysis of Wedge-enhanced Raman spectroscopy substrate

Author information +
History +
PDF

Abstract

Here, a novel Au Wedge-enhanced Raman spectroscopy (WERS) substrate is proposed. The electric field enhancement factor and the effective mode field radius with varying geometry parameters are investigated. The proper excitation wavelength 633 nm is obtained. The practical application of WERS substrate is discussed. The Au WERS not only can provide a continuous extremely highly localized electric field as surface-enhanced Raman scattering (SERS) hotspots, but also can offer 10 orders of magnitude of SERS enhancement factor. The corresponding results reveal that WERS substrate will be widely applied in optics, biology, chemistry and other fields.

Cite this article

Download citation ▾
A-ning Ma, Wen-jing Wei, Si-chang Peng, Yue-e Li, Ke-su Cai, Zhong Wang, Xi-jiao Mu. Design and analysis of Wedge-enhanced Raman spectroscopy substrate. Optoelectronics Letters, 2021, 17(5): 262-265 DOI:10.1007/s11801-021-0087-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KneippJ, KneippH, KneippK. Chemical Society Reviews, 2008, 37: 1052

[2]

DoeringW E, NieS M. J. Phys. Chem. B, 2002, 106: 311

[3]

YapF L, ThoniyotP, KrishnanS, KrishnamoorthyS. ACS Nano., 2012, 6: 2056

[4]

MoskovitsM. Journal of Raman Spectroscopy, 2005, 36: 485

[5]

Sprague-KleinE A, McAnallyM O, ZhdanovD V, ZrimsekA B, ApkarianV A, SeidemanT, SchatzG C, Van DuyneR P. Journal of the American Chemical Society, 2017, 139: 15212

[6]

ZhanP, DuttaPK, WangP, SongG, DaiM, ZhaoSX, WangZG, YinP, ZhangW, DingB, KeY. ACS Nano, 2017, 11: 1172

[7]

HeYH, HeR, YouEM, RadjenovicPM, SunSG, TianZQ, LiJ F, WangZH. Physical Review Letters, 2020, 125: 047401

[8]

ZhaoXF, YuJ, ZhangC, ChenCS, XuSC, LiCH, LiZ, ZhangSZ, LiuA H, ManBY. Applied Surface Science, 2018, 455: 1171

[9]

WangP, LiangO, ZhangW, SchroederT, XieYH. Advanced Materials, 2013, 25: 4918

[10]

JiangSZ, GuoJ, ZhangC, LiCH, WangMH, LiZ, GaoSS, ChenPX, SiH P, XuSC. RSC Advances, 2017, 7: 5764

[11]

Phan-QuangGC, HanX, KohCSL, SimHYF, LayCL, LeongSX, LeeYH, Pazos-PerezN, Alvarez-PueblaRA, LingXY. Accounts of Chemical Research, 2019, 52: 1844

[12]

LayCL, KohC SL, WangJ, LeeYH, JiangR, YangY, YangZ, PhangIY, LingXY. Nanoscale, 2018, 10: 575

[13]

HeX, WangS, LiuY, WangX. Sci. China Chem., 2019, 62: 1064

[14]

MorenoE, RodrigoSG, BozhevolnyiSI, Martín-MorenoL, García-VidalFJ. Physical Review Letters, 2008, 100: 023901

[15]

LiJF, AnemaJR, WandlowskiT, TianZQ. Chemical Society Reviews, 2015, 44: 8399

[16]

WangZ, CaiKS, LuY, WuHN, LiYE, ZhouQG. Nanotechnology Reviews, 2019, 8: 24

[17]

KalachyovaY, MaresD, LyutakovO, KostejnM, LapcakL, ŠvorčíkV. The Journal of Physical Chemistry C, 2015, 119: 9506

[18]

TrivediR, SharmaY, DhawanA. Optics Express, 2015, 23: 26064

[19]

MaAN, LiY E, ZhangXP. Plasmonics, 2013, 8: 769

[20]

StilesPL, DieringerJA, ShahN C, Van DuyneRP. Annual Review of Analytical Chemistry, 2008, 1: 601

[21]

KneippK, WangY, KneippH, PerelmanLT, ItzkanI, DasariR, FeldMS. Physical Review Letters, 1997, 78: 1667

[22]

HuAJ, LvBZ, WangXS, ZhouL. Modern Physics Letters B, 2016, 30: 16500781

[23]

MakkonenL. Journal of Physics: Condensed Matter, 2016, 28: 135001

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/