Study of the output characteristics of nonlinear optical loop mirror on an erbium-doped mode-locked fiber laser

Fei Zhou, Xue-fang Zhou, Mei-hua Bi, Guo-wei Yang, Miao Hu, Yang Lu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 283-288.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 283-288. DOI: 10.1007/s11801-021-0082-x
Article

Study of the output characteristics of nonlinear optical loop mirror on an erbium-doped mode-locked fiber laser

Author information +
History +

Abstract

We experimentally discussed the output characteristics of a passively mode-locked erbium-doped fiber laser using a single-mode fiber (SMF) structure as a saturable absorber (SA) based on nonlinear optic loop mirror (NOLM). The NOLM acting as an SA has properties of controllable pulse interval and pulse width. Four different types of NOLMs are experimentally discussed and the results show that fine adjustment to the coupler ratio together with optimization of the SMF length inside the NOLM can simultaneously implement high pulse energy and pulse internal tunability. The laser configuration provides a method to generate well-performing mode-locked lasing, and the investigations of the effects of changing some parameters of the laser also provide some help for the development of mode-locked fiber laser based on NOLM.

Cite this article

Download citation ▾
Fei Zhou, Xue-fang Zhou, Mei-hua Bi, Guo-wei Yang, Miao Hu, Yang Lu. Study of the output characteristics of nonlinear optical loop mirror on an erbium-doped mode-locked fiber laser. Optoelectronics Letters, 2021, 17(5): 283‒288 https://doi.org/10.1007/s11801-021-0082-x

References

[1]
FermannM E, HartlI. Nat. Photon., 2013, 7: 868
CrossRef Google scholar
[2]
DengD, ZhanL, GuZ, GuY, XiaY. Opt. Express, 2009, 17: 4284
CrossRef Google scholar
[3]
KellerU. Nature, 2003, 424: 831
CrossRef Google scholar
[4]
FengT, DingD, ZhaoZ, SuH, YanF, YaoX. Laser Phys. Lett., 2016, 13: 105104
CrossRef Google scholar
[5]
BarnesN P, WalshB M, ReichleD J, De YoungR J. Opt. Mater., 2009, 31: 1061
CrossRef Google scholar
[6]
SchibliT R, HartlI, YostD C, MartinM, MarcinkevičiusA, FermannM E, YeJ. Nat. Photon., 2008, 2: 355
CrossRef Google scholar
[7]
KrylovA A, ChernykhD S, ObraztsovaE D. Opt. Lett., 2017, 42: 2439
CrossRef Google scholar
[8]
WangF, RozhinA G, ScardaciV, SunZ, HennrichF, WhiteI H, MilneW I, FerrariA C. Nat. Nanotechnol., 2008, 3: 738
CrossRef Google scholar
[9]
DudleyJ M, FinotC, RichardsonD J, MillotG. Nat. Phys., 2008, 3: 597
CrossRef Google scholar
[10]
GereonH, YaoC, EndlE. Med. Laser Appl., 2005, 20: 135
CrossRef Google scholar
[11]
YanZY, LiXH, TangYL, ShumPP, YuX, ZhangY, WangQJ. Opt. Exp., 2015, 23: 4369
CrossRef Google scholar
[12]
MouC, SergeyevS, RozhinA, TuristynS. Opt. Lett., 2011, 36: 3831
CrossRef Google scholar
[13]
MashikoY, FujitaE, TokurakawaM. Opt. Express, 2016, 24: 26515
CrossRef Google scholar
[14]
HuP, LiuY, GuoL, GeX, LiuX, YuL, LiuQ. Appl. Opt., 2019, 58: 7845
CrossRef Google scholar
[15]
ZhangH, TangD Y, KnizeR J, ZhaoL, BaoQ, LohK P. Appl. Phys. Lett., 2010, 96: 111
[16]
PanW, ZhouJ, ZhangL, FengY. J. Light. Technol., 2019, 37: 1333
CrossRef Google scholar
[17]
HonzatkoP, BaravetsY, TodorovF. Laser Phys. Lett., 2013, 10: 075103
CrossRef Google scholar
[18]
LiuH, LuoA, WangF, TangR, LiuM, LuoZ, XuW, ZhaoC, ZhangH. Opt. Lett., 2014, 39: 4591
CrossRef Google scholar
[19]
YanP, LiuA, ChenY, ChenH, RuanS, GuoC, ChenS, LiI, YangH, HuJ. Opt. Mater. Express, 2015, 5: 479
CrossRef Google scholar
[20]
ChenY, JiangG, ChenS, GuoZ, YuX, ZhaoC, ZhangH, BaoQ, WenS, TangD, FanD. Opt. Express, 2015, 23: 12823
CrossRef Google scholar
[21]
SongY, ChenS, ZhangQ, LiL, ZhaoL, ZhangH, TangD. Opt. Express, 2016, 24: 25933
CrossRef Google scholar
[22]
WangZ, WangD, YangF, LiL, ZhaoC, XuB, JinS, CaoS, FangZ. J. Light. Technol., 2017, 35: 5280
CrossRef Google scholar
[23]
ZhuJ, TianW, GaoZ, WeiZ. Chin. J. Lasers, 2017, 44: 090001

Accesses

Citations

Detail

Sections
Recommended

/