Study of the output characteristics of nonlinear optical loop mirror on an erbium-doped mode-locked fiber laser

Fei Zhou , Xue-fang Zhou , Mei-hua Bi , Guo-wei Yang , Miao Hu , Yang Lu

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 283 -288.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 283 -288. DOI: 10.1007/s11801-021-0082-x
Article

Study of the output characteristics of nonlinear optical loop mirror on an erbium-doped mode-locked fiber laser

Author information +
History +
PDF

Abstract

We experimentally discussed the output characteristics of a passively mode-locked erbium-doped fiber laser using a single-mode fiber (SMF) structure as a saturable absorber (SA) based on nonlinear optic loop mirror (NOLM). The NOLM acting as an SA has properties of controllable pulse interval and pulse width. Four different types of NOLMs are experimentally discussed and the results show that fine adjustment to the coupler ratio together with optimization of the SMF length inside the NOLM can simultaneously implement high pulse energy and pulse internal tunability. The laser configuration provides a method to generate well-performing mode-locked lasing, and the investigations of the effects of changing some parameters of the laser also provide some help for the development of mode-locked fiber laser based on NOLM.

Cite this article

Download citation ▾
Fei Zhou, Xue-fang Zhou, Mei-hua Bi, Guo-wei Yang, Miao Hu, Yang Lu. Study of the output characteristics of nonlinear optical loop mirror on an erbium-doped mode-locked fiber laser. Optoelectronics Letters, 2021, 17(5): 283-288 DOI:10.1007/s11801-021-0082-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FermannM E, HartlI. Nat. Photon., 2013, 7: 868

[2]

DengD, ZhanL, GuZ, GuY, XiaY. Opt. Express, 2009, 17: 4284

[3]

KellerU. Nature, 2003, 424: 831

[4]

FengT, DingD, ZhaoZ, SuH, YanF, YaoX. Laser Phys. Lett., 2016, 13: 105104

[5]

BarnesN P, WalshB M, ReichleD J, De YoungR J. Opt. Mater., 2009, 31: 1061

[6]

SchibliT R, HartlI, YostD C, MartinM, MarcinkevičiusA, FermannM E, YeJ. Nat. Photon., 2008, 2: 355

[7]

KrylovA A, ChernykhD S, ObraztsovaE D. Opt. Lett., 2017, 42: 2439

[8]

WangF, RozhinA G, ScardaciV, SunZ, HennrichF, WhiteI H, MilneW I, FerrariA C. Nat. Nanotechnol., 2008, 3: 738

[9]

DudleyJ M, FinotC, RichardsonD J, MillotG. Nat. Phys., 2008, 3: 597

[10]

GereonH, YaoC, EndlE. Med. Laser Appl., 2005, 20: 135

[11]

YanZY, LiXH, TangYL, ShumPP, YuX, ZhangY, WangQJ. Opt. Exp., 2015, 23: 4369

[12]

MouC, SergeyevS, RozhinA, TuristynS. Opt. Lett., 2011, 36: 3831

[13]

MashikoY, FujitaE, TokurakawaM. Opt. Express, 2016, 24: 26515

[14]

HuP, LiuY, GuoL, GeX, LiuX, YuL, LiuQ. Appl. Opt., 2019, 58: 7845

[15]

ZhangH, TangD Y, KnizeR J, ZhaoL, BaoQ, LohK P. Appl. Phys. Lett., 2010, 96: 111

[16]

PanW, ZhouJ, ZhangL, FengY. J. Light. Technol., 2019, 37: 1333

[17]

HonzatkoP, BaravetsY, TodorovF. Laser Phys. Lett., 2013, 10: 075103

[18]

LiuH, LuoA, WangF, TangR, LiuM, LuoZ, XuW, ZhaoC, ZhangH. Opt. Lett., 2014, 39: 4591

[19]

YanP, LiuA, ChenY, ChenH, RuanS, GuoC, ChenS, LiI, YangH, HuJ. Opt. Mater. Express, 2015, 5: 479

[20]

ChenY, JiangG, ChenS, GuoZ, YuX, ZhaoC, ZhangH, BaoQ, WenS, TangD, FanD. Opt. Express, 2015, 23: 12823

[21]

SongY, ChenS, ZhangQ, LiL, ZhaoL, ZhangH, TangD. Opt. Express, 2016, 24: 25933

[22]

WangZ, WangD, YangF, LiL, ZhaoC, XuB, JinS, CaoS, FangZ. J. Light. Technol., 2017, 35: 5280

[23]

ZhuJ, TianW, GaoZ, WeiZ. Chin. J. Lasers, 2017, 44: 090001

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/