A whispering gallery mode strain sensor based on microtube resonator

Yu Liu , Hui-hui Yang , Yong-le Lu , Ke Di , Jun-qi Guo

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (4) : 199 -204.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (4) : 199 -204. DOI: 10.1007/s11801-021-0069-7
Article

A whispering gallery mode strain sensor based on microtube resonator

Author information +
History +
PDF

Abstract

A novel whispering gallery mode (WGM) strain sensor based on microtube has been proposed, where perceiving strain variations are reported via the dynamical regulation of a whispering gallery mode. The WGMs in the microtube resonator were evanescently excited by a micro-nano fiber fabricated by the fusion taper technique. The structural changes of microtubes under axial strain were simulated with finite element software, and the effect of microtube wall thickness on strain sensitivity was systematically studied through experiments. The experimental results show that the strain sensitivity of thin-walled microtube is found to be 1.18 pm/µε and the Q-factor in the order of 4.4×104. Due to its simple fabrication and easy manipulation as well as good sensing performance, the microtube strain sensor has potential applications in high-sensitivity optical sensing.

Cite this article

Download citation ▾
Yu Liu, Hui-hui Yang, Yong-le Lu, Ke Di, Jun-qi Guo. A whispering gallery mode strain sensor based on microtube resonator. Optoelectronics Letters, 2021, 17(4): 199-204 DOI:10.1007/s11801-021-0069-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KimR H, KimD H, XiaoJ, KimB H, ParkS I, PanilaitisB, GhaffariR, YaoJ, LiM, LiuZ, ViktorM, KimD G, LeA, RalphG, DavidL, Kaplan, FiorenzoG O, HuangY G, ZhanK, JohnA R. Nature Materials, 2010, 9: 929

[2]

YamadaT, HayamizuY, YamamotoY, YomogidaY, Izadi-NajafabadiA, FutabaD N, HataK. Nature Nanotechnology, 2011, 6: 296

[3]

HuaQ, SunJ, LiuH, BaoR, YuR, ZhaiJ Y, WangZ L. Nature Communications, 2018, 9: 1

[4]

ZhangL, LiuY, GaoX, XiaZ. Applied Optics, 2015, 54: 109

[5]

CampanellaC E, CuccovilloA, CampanellaC, YurtA, PassaroV. Sensors, 2018, 18: 3115

[6]

FerreiraM S, RorizP, BierlichJ, KobelkeJ, WondraczekK, AicheleC, SchusterK, SantosJ L, FrazãoO. Optics Express, 2015, 23: 16063

[7]

YinC, CaoZ, ZhangZ, ShuiT, WangR, WangJ, LuL, ZhenS L, YuB L. IEEE Photonics Journal, 2014, 6: 1

[8]

ChoiH Y, KimM J, LeeB H. Optics Express, 2007, 15: 5711

[9]

MenL, LuP, ChenQ. IEEE Photonics Technology Letters, 2011, 23: 320

[10]

HeL, ÖzdemirS K, ZhuJ, KimW, YangL. Nat. Nanotechnol., 2011, 6: 428

[11]

C. Ciminelli, G. Brunetti, F. Dell’Olio, F. Innone, D. Conteduca and M. N. Armenise, Rigorous Design of an Ultra-High Q/V Photonic/Plasmonic Cavity to Be Used in Biosensing Applications, In International Conference on Applications in Electronics Pervading Industry, 185 (2016).

[12]

IoppoloT, KozhevnikovM, StepaniukV, ÖtügenM V, SheverevV. Applied Optics, 2008, 47: 3009

[13]

HenzeR, SeifertT, WardJ, BensonO. Optics Letters, 2011, 36: 4536

[14]

LinslalC L, KailasnathM, MathewS, NideepT K, RadhakrishnanP, NampooriV P N, VallabhanC P G. Optics Letters, 2016, 41: 551

[15]

KavungalV, FarrellG, WuQ, MallikA K, SemenovaY. Journal of Lightwave Technology, 2017, 36: 1757

[16]

KavungalV, FarrellG, WuQ, MallikA K, ShenC, SemenovaY. Optical Fiber Technology, 2019, 50: 50

[17]

LiuS, LiaoC R, WangY P. Journal of Applied Sciences, 2018, 36: 104(in Chinese)

[18]

Hossein-ZadehM, VahalaK J. Optics Express, 2006, 14: 10800

[19]

KlitzingW V, LongR, IlchenkoV S, HareJ, Lefèvre-SeguinV. Optics Letters, 2001, 26: 166

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/