Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method

Ping Yin, Qiang Lin, Yi Ruan, Jing-jing Chen

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 257-261.

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 257-261. DOI: 10.1007/s11801-021-0064-z
Article

Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method

Author information +
History +

Abstract

We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminated by evanescent wave generated from total internal reflection. The effects of the wavelength, the polarization of the incident wave, the number of nanoparticles and the spacing of multiple nanoparticles on the field enhancement and extinction efficiency are calculated by our model. Our work could pave the way to improve the field enhancement of multiple nanoparticles systems.

Cite this article

Download citation ▾
Ping Yin, Qiang Lin, Yi Ruan, Jing-jing Chen. Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method. Optoelectronics Letters, 2021, 17(5): 257‒261 https://doi.org/10.1007/s11801-021-0064-z

References

[1]
LokeV L Y, MengucM P. Journal of the Optical Society of America a-Optics Image Science and Vision, 2010, 27: 2293
CrossRef Google scholar
[2]
OatesT W H, MucklichA. Nanotechnology, 2005, 16: 2606
CrossRef Google scholar
[3]
WilletsK A, Van DuyneR P. Annual Review of Physical Chemistry, 2007, 58: 267
CrossRef Google scholar
[4]
AcimovicS S, KreuzerM P, GonzalezM U, QuidantR. Acs Nano, 2009, 3: 1231
CrossRef Google scholar
[5]
BansalA, VermaS S. Aip Advances, 2014, 4: 14
CrossRef Google scholar
[6]
AmendolaV, PilotR, FrasconiM, MaragoO M, IatiM A. Journal of Physics-Condensed Matter, 2017, 29: 48
CrossRef Google scholar
[7]
YoonJ H, SelbachF, LangolfL, SchluckerS. Small, 2018, 14: 5
[8]
ZhangH-Y, YuS-G, BianM-J. Optoelectronics Letters, 2018, 14: 241
CrossRef Google scholar
[9]
MayergoyzI D. Physica B-Condensed Matter, 2012, 407: 1307
CrossRef Google scholar
[10]
SantosJ F L, SantosM J L, ThesingA, TavaresF, GriepJ, RodriguesM R F. Quimica Nova, 2016, 39: 1098
[11]
AmendolaV. Physical Chemistry Chemical Physics, 2016, 18: 2230
CrossRef Google scholar
[12]
WangJ-J, JiaZ-H. Optoelectronics Letters, 2019, 15: 439
CrossRef Google scholar
[13]
KarakouzT, TeslerA B, BendikovT A, VaskevichA, RubinsteinI. Advanced Materials, 2008, 20: 3893
CrossRef Google scholar
[14]
WilletsK A, WilsonA J, SundaresanV, JoshiP B. Chemical Reviews, 2017, 117: 7538
CrossRef Google scholar
[15]
SchollJ A, Garcia-EtxarriA, KohA L, DionneJ A. Nano Letters, 2013, 13: 564
CrossRef Google scholar
[16]
KadkhodazadehS, de LassonJ R, BeleggiaM, KneippH, WagnerJ B, KneippK. Journal of Physical Chemistry C, 2014, 118: 5478
CrossRef Google scholar
[17]
LerchS, ReinhardB M. Nature Communications, 2018, 9: 1608
CrossRef Google scholar
[18]
SuK H, WeiQ H, ZhangX, MockJ J, SmithD R, SchultzS. Nano Letters, 2003, 3: 1087
CrossRef Google scholar
[19]
EncinaE R, CoronadoE A. Journal of Physical Chemistry C, 2010, 114: 3918
CrossRef Google scholar
[20]
RuanY, LiK, LinQ, ZhangT. Chinese Physics Letters, 2018, 35: 4
CrossRef Google scholar
[21]
DraineB T, FlatauP J. Journal of the Optical Society of America a-Optics Image Science and Vision, 1994, 11: 1491
CrossRef Google scholar
[22]
YurkinM A, HoekstraA G. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 106: 558
CrossRef Google scholar
[23]
YurkinM A, HoekstraA G. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112: 2234
CrossRef Google scholar
[24]
O. A. Yeshchenko and A. O. Pinchuk, Reviews in Plasmonics 2017, C. D. Geddes, ed., Springer International Publishing, Cham, 285 (2019).
[25]
DraineB T, GoodmanJ. Astrophysical Journal, 1993, 405: 685
CrossRef Google scholar
[26]
MackowskiD W. Journal of the Optical Society of America a-Optics Image Science and Vision, 2002, 19: 881
CrossRef Google scholar
[27]
EvlyukhinA B, ReinhardtC, ChichkovB N. Physical Review B, 2011, 84: 8
CrossRef Google scholar
[28]
B. J. Frey, D. B. Leviton, T. J. Madison, Q. Gong and M. Tecza, Cryogenic Optical Systems and Instruments Xii, J. B. Heaney and L. G. Burriesci, ed., Spie-Int Soc. Optical Engineering, Bellingham, 2007.
[29]
RaoW Y, LiQ, WangY Z, LiT, WuL J. Acs Nano, 2015, 9: 2783
CrossRef Google scholar
[30]
JingC, GuZ, YingY L, LiD W, ZhangL, LongY T. Analytical Chemistry, 2012, 84: 4284
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/