Generation of regular optical vortex arrays using double gratings

Hai-bin Sun , Xin-yu Zhang , Ping Sun

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 317 -320.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (5) : 317 -320. DOI: 10.1007/s11801-021-0047-0
Article

Generation of regular optical vortex arrays using double gratings

Author information +
History +
PDF

Abstract

In order to generate high quality regular optical vortex array (OVA), we present an experimental method for generating OVA using phase only liquid crystal spatial light modulator (LC-SLM) assisted two gratings. In the scheme, holograms of two grating are displayed on the screen of two LC-SLMs respectively; the diffraction optical fields are captured by a CCD camera. The simulated and experimental results show that the regular OVA can be generated by using double diffraction gratings. The generated OVAs have a constant topological charge of ±1. The method can provide a useful pathway to produce regular OVA for some applications in optical communication, particle trapping and optical metrology.

Cite this article

Download citation ▾
Hai-bin Sun, Xin-yu Zhang, Ping Sun. Generation of regular optical vortex arrays using double gratings. Optoelectronics Letters, 2021, 17(5): 317-320 DOI:10.1007/s11801-021-0047-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangH, LiuL, ZhouC, XuJ, ZhangM, TengS, CaiY. Nanophotonics, 2019, 8: 317

[2]

Favre-Bulle ItiaA, Stilgoe AlexanderB, Scott EthanK, Rubinsztein-DunlopH. Nanophotonics, 2019, 8: 1023

[3]

Ranha Neves AntonioA, Cesar CarlosL. Journal of the Optical Society of America B, 2019, 36: 1525

[4]

BaudoinM, GerbedoenJ-C, RiaudA, Matar OlivierB, SmaginN, ThomasJ-L. Science Advances, 2019, 5: eaav1967

[5]

FlaminiF, SpagnoloN, SciarrinoF. Reports on Progress in Physics, 2019, 82: 016001

[6]

ZouL, GuX, WangL. Optics Communications, 2018, 410: 333

[7]

GongL, ZhaoQ, ZhangH, HuX, HuangK, YangJ, LiY. Light: Science & Applications, 2019, 8: 27

[8]

ZhangX, HuC, SunP. Optik, 2019, 185: 1071

[9]

WangX, NieZ, LiangY, WangJ, LiT, JiaB. Nanophotonics, 2018, 7: 1533

[10]

SongL, YangZ, ZhangS, LiX. Physical Review A, 2019, 99: 063817

[11]

SenthilkumaranP, MasajadaJ, SatoS. International Journal of Optics, 2012, 2012: 1

[12]

LadavacK, GrierD. Optics Express, 2004, 12: 1144

[13]

YashikiS. Applied Optics, 2015, 54: 5353

[14]

LiuK, LiuZ, DongX. Optics Express, 2019, 27: 21652

[15]

JiangS, LiX, MaL, GaoY, GuiW, ChengC. Chinese Physics Letters, 2015, 32: 104209

[16]

Ghai DevinderP, VyasS, SenthilkumaranP, SirohiR S. Optics Communications, 2009, 282: 2692

[17]

LinZ, LiX, ZhaoR, SongX, WangY, HuangL. Nanophotonics, 2019, 8: 1079

[18]

WangY, XuY, FengX, ZhaoP, LiuF, CuiK, ZhangW, HuangY. Optics Letters, 2016, 41: 1478

[19]

MitinN, PikulinA. Optics Letters, 2017, 42: 2527

[20]

HuangT D, LuT H. Optics Letters, 2019, 44: 3917

[21]

WangY K, MaH X, ZhuL H, TaiY P, LiX Z. Applied Physics Letters, 2020, 116: 011101

[22]

ChenD, MiaoY, WangH, DongJ. Journal of Physics: Photonics, 2020, 2: 035002

[23]

FengF, WeiS, LiL, MinC, SomekhM. Optics Express, 2019, 27: 27536

[24]

Singh BrijeshK, SinghG, SenthilkumaranP, MehtaD S. International Journal of Optics, 2012, 2012: 7

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/