Study on ultra-precision phase synchronization technique employing phase-locked loop

Wan-peng Zhang , Hong Wu , Wei-feng Zhou , Ying-xin Zhao , Zhi-yang Liu , Meng-huan Yang

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (3) : 134 -139.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (3) : 134 -139. DOI: 10.1007/s11801-021-0036-3
Article

Study on ultra-precision phase synchronization technique employing phase-locked loop

Author information +
History +
PDF

Abstract

Microwave-to-optical phase synchronization techniques have attracted growing research interests in recent years. Here, we demonstrate tight, real-time phase synchronization of an optical frequency comb to a rubidium atomic clock. A detailed mathematical model of the phase locking system is developed to optimize its built-in parameters. Based on the model, we fabricate a phase locking circuit with high integration. Once synchronized, the fractional frequency instability of the repetition rate agrees to 6.35×10−12 at 1 s and the standard deviation is 1.5 mHz, which indicates the phase synchronization system can implement high-precision stabilization. This integrated stable laser comb should enable a wide range of applications beyond the laboratory.

Cite this article

Download citation ▾
Wan-peng Zhang, Hong Wu, Wei-feng Zhou, Ying-xin Zhao, Zhi-yang Liu, Meng-huan Yang. Study on ultra-precision phase synchronization technique employing phase-locked loop. Optoelectronics Letters, 2021, 17(3): 134-139 DOI:10.1007/s11801-021-0036-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TrochaP, KarpovM, GaninD, PfeifferMHP, KordtsA, WolfS, KrockenbergerJ, Marin-PalomoP, WeimannC, RandelS, FreudeW, KippenbergTJ, KoosC. Science, 2018, 359: 887

[2]

WangG-c, TanL-l, YanS-h. Sensors, 2018, 18: 500

[3]

CoddingtonI, SwannW C, NenadovicL, NewburyN R. Nature Photonics, 2009, 3: 351

[4]

KliebischO, HeineckeD C, BarbieriS, SantarelliG, LiH, SirtoriC, DekorsyT. Optica, 2018, 5: 1431

[5]

Chen Xing, Shang Jian-ming, Wang Dong-xing, Ci Cheng, Zhang Wan-peng, Liu Bo, Wu Hong, Yu Song and Zhang Zhi-gang, CLEO: Applications and Technology, Optical Society of America, JW2A.152 (2018).

[6]

JungK, ShinJ, KangJ, HunzikerS, MinC-K, KimJ. Optics Letters, 2014, 39: 1577

[7]

ChengCI, HongW, RanT, BoL, XingC, Xue-songZ, YuZ, Ying-xinZ. Optoelectronics Letters, 2018, 14: 109

[8]

Ronald Holzwarth, Rafael A. Probst, Tilo Steinmetz, Yuanje Wu, Thomas Udem and Theodor W. Hänsch, CLEO: Science and Innovations, Optical Society of America, STh4H.3 (2016).

[9]

E. Obrzud, M. Rainer, A. Harutyunyan, M.H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi and A. Ghedina, 2018 European Conference on Optical Communication (ECOC), IEEE (2018).

[10]

Cundiff, StevenT, JunY. Journal of Modern Optics, 2005, 52: 201

[11]

MicalizioS, GodoneA, CalossoC, LeviF, AffolderbachC, GruetF. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2012, 59: 457

[12]

WashburnB R, DiddamsS A, NewburyN R, NicholsonJ W, YanM F, JørgensenC G. Optics Letters, 2004, 29: 250

[13]

DongH, BoN, PengL, Zhi-gangZ, Jian-yeZ. IEEE Journal of Quantum Electronics, 2011, 47: 891

[14]

DongH, Jiu-taoW, Quan-shengR, Jian-yeZ. IEEE Journal of Quantum Electronics, 2012, 48: 839

[15]

JungK, ShinJ, KimJ. IEEE Photonics Journal, 2013, 5: 5500906

[16]

HanumoluP K, BrownleeM, MayaramK, Moon. IEEE Transactions on Circuits & Systems I Regular Papers, 2004, 51: 1665

[17]

R. E. Best, McGraw-Hill Education, 2007.

[18]

ShanX, SpiritD M. Electronics Letters, 1993, 29: 979

[19]

WileyR G. IEEE Transactions on Instrumentation and Measurement, 1977, 26: 38

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/