Simultaneous displacement measurement method of multiple targets based on laser self-mixing interference

Yan Zhao , Ai-ling Zhang , Hai-wei Zhang

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (3) : 165 -169.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (3) : 165 -169. DOI: 10.1007/s11801-021-0034-5
Article

Simultaneous displacement measurement method of multiple targets based on laser self-mixing interference

Author information +
History +
PDF

Abstract

In order to simultaneously measure the displacements of multiple targets, the laser self-mixing interference (SMI) measurement method based on variational mode decomposition (VMD) is proposed. The SMI signal containing the motion information of the external targets is detected by a photodiode. The VMD can non-recursively decompose the mixed SMI signal into SMI signals corresponding to different external targets. The displacement signals can be reconstructed by fringe counting method and interpolation method. The experimental results show that the displacement signals of different external targets can be reconstructed with half wavelength accuracy, which verifies the correctness and feasibility of this method. This method can improve the measurement efficiency, which offers an effective method for the multi-channel displacement measurement.

Cite this article

Download citation ▾
Yan Zhao, Ai-ling Zhang, Hai-wei Zhang. Simultaneous displacement measurement method of multiple targets based on laser self-mixing interference. Optoelectronics Letters, 2021, 17(3): 165-169 DOI:10.1007/s11801-021-0034-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jia-jianC, Hui-zhuH, Li-junM, Yi-lanZ, Xiao-wuS. Optics and Precision Engineering, 2019, 27: 1435 in Chinese)

[2]

AzconaF J, AtashkhooeiR, RoyoS, AstudilloJ M, JhaA. IEEE Photonics Technology Letters, 2013, 25: 2074

[3]

Li-shuangL, YongL, HaoM, Jia-xingH. Infrared and Laser Engineering, 2019, 48: 0617002

[4]

Yun-kunZ, Xue-weiF, Chen-chenW, LiangL. Optics and Lasers in Engineering, 2020, 126: 105866

[5]

Xiu-fangW, Wei-jieG, PengC, Hong-boB. Optics Communications, 2019, 453: 124383

[6]

Xiu-fangW, YeY, PengC, Bing-kunG. Optical and Quantum Electronics, 2020, 52: 34

[7]

BernalO D, SeatH C, ZabitU, SurreF, BoschT. IEEE Sensors Journal, 2016, 16: 7903

[8]

Yu-xiR, BinL, Yan-guangY, Jiang-taoX, Qing-huaG, JunT. IEEE Photonics Journal, 2018, 10: 6804010

[9]

Hai-shaN, Yuan-yuanM, Jian-junS, FengL, Lian-qingZ. Journal of Optics, 2019, 21: 125603

[10]

Yu-xiR, BinL, Yan-guangY, Jiang-taoX, Qing-huaG, JunT. Applied Physics Letters, 2019, 115: 011102

[11]

MezzapesaF P, ColumboL, BrambillaM, DabbiccoM, AnconaA, SibillanoT, LuciaF D, LugaràP M, ScamarcioG. Optics Express, 2011, 19: 16160

[12]

LiangL, Wen-huaZ, BoY, Jian-xiZ, Hua-qiaoG, Ben-liY. IEEE Sensors Journal, 2013, 13: 4387

[13]

PengC, Yu-weiL, Bing-kunG, Chun-leiJ. Optics Communications, 2018, 410: 693

[14]

Yi-chaoZ, YiS. IEEE Transactions on Instrumentation and Measurement, 2020, 69: 929

[15]

WuZ H, HuangN E. Advances in Adaptive Data Analysis, 2009, 1: 1

[16]

DragomiretskiyK, ZossoD. IEEE Transactions on Signal Processing, 2014, 62: 531

[17]

XinL, Zeng-qiangM, DeK, XiangL. Measurement, 2020, 155: 107554

[18]

DonatiS, GiulianiG, MerloS. IEEE Journal of Quantum Electronics, 1995, 31: 113

[19]

MingW, Guan-mingL. Review of Scientific Instruments, 2001, 72: 3440

[20]

BesC, PlantierG, BoschT. IEEE Transactions on Instrumentation and Measurement, 2006, 55: 1101

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/