Numerical simulation of asymmetric dual-core fiber with large group-velocity dispersion

Jian-fang Yang , Chun-can Wang

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (2) : 96 -101.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (2) : 96 -101. DOI: 10.1007/s11801-021-0026-5
Article

Numerical simulation of asymmetric dual-core fiber with large group-velocity dispersion

Author information +
History +
PDF

Abstract

The asymmetric dual-core fiber (ADCF) is proposed to obtain large group velocity dispersion (GVD) because of the coupling effects between the fundamental modes of the central core and high-order modes of the side core. The super-modes of the ADCF can provide anomalous- and normal-GVD profiles with large peak values at the maximum dispersion wavelengths. The maximum dispersion wavelengths can be shifted in the wavelength window of 1 550 nm by properly tuning the refractive indexes and diameters of the cores or spacing between the two cores. Furthermore, the numerical results show that the ADCF with the normal-GVD supermode 1 can be employed in the pulse broadening, where the broadening factor can reach more than 30 without pulse distortion from nonlinear effects.

Cite this article

Download citation ▾
Jian-fang Yang, Chun-can Wang. Numerical simulation of asymmetric dual-core fiber with large group-velocity dispersion. Optoelectronics Letters, 2021, 17(2): 96-101 DOI:10.1007/s11801-021-0026-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KivistöS, HerdaR, OkhotnikovO G. Optics Express, 2008, 16: 265

[2]

HillK O, BilodeauF, MaloB, KitagawaT, TheriaultS, JohnsonD C, AlbertJ, TakiguchiK. Optics. Letters, 1994, 19: 1314

[3]

KashyapR, ChernikovS V, McKeeP F, TaylorJ R. Electronics Letters, 1994, 30: 1078

[4]

ThyagarajanK, VarshneyR K, PalaiP, GhatakA K, GoyalI C. IEEE Photonic Technology Letters, 1996, 8: 1510

[5]

GérômeF, AugusteJ L, MauryJ, BlondyJ M, MarcouJ. Journal of Lightwave Technology, 2006, 24: 442

[6]

SakamotoT, MatsuiT, TsujikawaK, TomitaS. Applied Optics, 2011, 50: 2979

[7]

FujisawaT, SaitohK, WadaK, KoshibaM. Optics Express, 2006, 14: 893

[8]

ZografopoulosD C, VázquezC, KriezisE E, YioultsisT V. Optics Express, 2011, 19: 21680

[9]

MajiP S, ChaudhuriP R. Optics Communications, 2014, 325: 134

[10]

YangS-g, ZhangY-j, PengX-z, LuY, XieS-z, LiJ-y, ChenW, JiangZ-w, PengJ-g, LiH-q. Optics Express, 2006, 14: 3015

[11]

XuH, WangX, HuangX, ZhouC, ZhuH, CaiX. IEEE Photonics Technology Letters, 2018, 30: 1499

[12]

WeiW, ZhangX, HuangY-q, RenX-m. Optik, 2014, 125: 2749

[13]

HardyA, StreiferW. Journal of Lightwave Technology, 1985, 3: 1135

[14]

LiJ, MaoY, LuC, HwaY T, WaiP K A. Journal of Lightwave Technology, 2010, 28: 1608

[15]

PeschelU, PeschelT, LedererF. Applied Physics Letters, 1995, 67: 2111

[16]

KaponE, KatzJ, YarivA. Optics. Letters, 1984, 9: 125

[17]

XiaC, EftekharM A, CorreaR A, Antonio-LopezJ E, SchulzgenA, ChristodoulidesD, LiG. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22: 1

[18]

FlemingJ W. Applied Optics, 1984, 23: 4486

[19]

AgrawalGP. Nonlinear Fiber Optics, 2006, San Diego, Academic Press

[20]

AugusteJ L, BlondyJ M, MauryJ, MarcouJ, DussardierB, MonnomG, JindalR, ThyagarajanK, PalB P. Optical Fiber Technology, 2002, 8: 89

[21]

FermannM E. Optics Letters, 1998, 23: 52

[22]

BhatiaN, RustagiK C, JohnJ. Optics Express, 2014, 22: 16847

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/