Research on flexible silver nanowire electrode for organic light-emitting devices

Jun-tao Hu , Jie Li , Geng-geng Zhang , Kai Xu , Xiang-hua Wang

Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (2) : 70 -74.

PDF
Optoelectronics Letters ›› 2021, Vol. 17 ›› Issue (2) : 70 -74. DOI: 10.1007/s11801-021-0005-x
Article

Research on flexible silver nanowire electrode for organic light-emitting devices

Author information +
History +
PDF

Abstract

By spin-coating silver nanowires (AgNWs) and polymethyl methacrylate (PMMA), applying pressure imprint and plasma treatment, we obtained flat AgNW thin film with a sheet resistance of 20 Ω/sq and a transmittance of 78% at 550 nm with low surface roughness. No significant change in sheet resistance was observed after cyclic bending (bending radius is 5 mm) test and tape test. After 1 000 bending tests, the change rate of sheet resistance was only 8.3%. The organic light-emitting devices (OLEDs) were prepared by using such AgNW electrodes and a maximum brightness of 5 090 cd/m2 was obtained. Compared with the AgNWs electrode without any treatment, the present AgNW electrodes have lower sheet resistance and better hole injection. Our results show spin-coated with flat layers, embossed and plasma-treated AgNW electrodes are suitable for manufacturing flexible organic optoelectronic devices.

Cite this article

Download citation ▾
Jun-tao Hu,Jie Li,Geng-geng Zhang,Kai Xu,Xiang-hua Wang. Research on flexible silver nanowire electrode for organic light-emitting devices. Optoelectronics Letters, 2021, 17(2): 70-74 DOI:10.1007/s11801-021-0005-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LuoY, WangC, WangL, DingY, LiL, WeiB, ZhangJ. ACS Appl. Mater. Interfaces, 2014, 6: 10213

[2]

ChenH W, LeeJ H, LinB Y, ChenS, WuS T. Light Sci. Appl., 2018, 7: 17168

[3]

KimD H, ChoN S, OhH Y, YangJ H, JeonW S, ParkJ S, SuhM C, KwonJ H. Adv. Mater., 2011, 23: 2721

[4]

KimS, KwonH J, LeeS, ShimH, ChunY, ChoiW, KwackJ, HanD, SongM, KimS, MohammadiS, KeeI, LeeS Y. Adv. Mater., 2011, 23: 3511

[5]

GaynorW, HofmannS, ChristoforoM G, SachseC, MehraS, SalleoA, McGeheeM D, GatherM C, LussemB, Muller-MeskampL, PeumansP, LeoK. Adv. Mater., 2013, 25: 4006

[6]

MengH, LuoJ, WangW, ShiZ, NiuQ, DaiL, QinG. Advanced Functional Materials, 2013, 23: 3324

[7]

YunS O, HwangY, ParkJ, JeongY, KimS H, NohB I, JungH S, JangH S, HyunY, ChoaS H, KoH C. Adv. Mater., 2013, 25: 5626

[8]

WhiteM S, KaltenbrunnerM, GlowackiE D, GutnichenkoK, KettlgruberG, GrazI, AazouS, UlbrichtC, EgbeD A M, MironM C, MajorZ, ScharberM C, SekitaniT, SomeyaT, BauerS, SariciftciN S. Nature Photonics, 2013, 7: 811

[9]

PaineD C, WhitsonT, JaniacD, BeresfordR, YangC O, LewisB. Journal of Applied Physics, 1999, 85: 8445

[10]

FievetF, LagierJ P, FiglarzM. MRS BULLETIN, 1989, 14: 29

[11]

SunY, YinY, BrianT M, HerricksT, XiaY. Chem. Mater., 2002, 11: 4736

[12]

KwonK C, KimS, KimC, LeeJ L, KimS Y. Organic Electronics, 2014, 15: 3154

[13]

YangG, LeeC, KimJ, RenF, PeartonS J. Phys. Chem. Chem. Phys., 2013, 15: 1798

[14]

LiuJ, LiY, WangS, LingZ, LianH, XuT, ZhangX, LiaoY, WeiB. Journal of Alloys and Compounds, 2020, 814: 152299

[15]

LiD, LaiW Y, ZhangY Z, HuangW. Adv. Mater., 2018, 30: 1704738

[16]

FriendR H, GymerR W, HolmesA B, BurroughesJ H, MarksR N, TalianiC. Nature, 1999, 397: 121

[17]

ZhengH, ZhengY, LiuN, AiN, WangQ, WuS, ZhouJ, HuD, YuS, HanS, XuW, LuoC, MengY, JiangZ, ChenY, LiD, HuangF, WangJ, PengJ, CaoY. Nat. Commun., 2013, 4: 1971

[18]

PardoD A, JabbourG E, PeyghambarianN. Adv. Mater., 2000, 12: 1249

[19]

NamS, SongM, KimD H, ChoB, LeeH M, KwonJ D, ParkS G, NamK S, JeongY, KwonS H, ParkY C, JinS H, KangJ W, JoS, KimC S. Sci. Rep., 2014, 4: 4788

[20]

ListonE M, MartinuL, WertheimerM R. Journal of Adhesion Science and Technology, 1993, 7: 1091

[21]

ListonE M. The Journal of Adhesion, 1989, 30: 199

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/