A robust salinity sensor based on encapsulated long-period grating in microfiber

Shu-hui Wu , Wa Jin , Wei-hong Bi , Xia Li , Lin-ke Zhang , Yun Jin

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 418 -422.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 418 -422. DOI: 10.1007/s11801-020-9224-9
Article

A robust salinity sensor based on encapsulated long-period grating in microfiber

Author information +
History +
PDF

Abstract

A robust fiber sensor for salinity measurement based on encapsulated long-period grating in microfiber is proposed. The long-period grating is fabricated in microfiber by inducing periodical deformation with CO2 laser, which is then encapsulated in a holey capillary tube. The encapsulation tube is designed to effectively protect the microfiber from external interference, but does not change the optical properties of the fiber and the response speed of the sensor, which makes the sensor more robust for real applications. Experimental results show that the sensor can achieve a sensitivity of 2.16 nm/% with a good linearity for concentration from 0% to 20%. It is theoretically proved that the sensitivity can be further improved by optimizing the diameter parameters. Such structure may be used as low loss evanescent-wave-coupled optical absorption, fluorescent and gain cells, photoacoustic cells, and etc.

Cite this article

Download citation ▾
Shu-hui Wu, Wa Jin, Wei-hong Bi, Xia Li, Lin-ke Zhang, Yun Jin. A robust salinity sensor based on encapsulated long-period grating in microfiber. Optoelectronics Letters, 2020, 16(6): 418-422 DOI:10.1007/s11801-020-9224-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhaoY, WuQ-I, ZhangY. Sensors Actuators B: Chem., 2018, 258: 822

[2]

QianY, ZhaoY, WuQ-I, YangY J S, ChemicalA B. Sensors and Actuators B: Chemical, 2018, 260: 86

[3]

WangJ, ChenB. Sensors and Actuators A: Physical, 2012, 184: 53

[4]

ChuangW, Bai-OuG, ChaoL, Hwa-YawT. Opt. Express, 2011, 19: 20003

[5]

YangF, SukhishviliS, DuH, TianF. Sensors Actuators B: Chem., 2017, 253: 745

[6]

WangL, XuY, GengY, WangJ, DuY, YiD, HongX, LiX. J. Phys. D: Appl. Phys., 2019, 52: 495402

[7]

ZhangH, XuX, ZhaoH, DongF, QianZ, XueB J A S. Appl. Sci., 2019, 9: 5043

[8]

VigneswaranD, AyyanarN, SharmaM, SumathiM, SM R M, PorsezianK. Sensors and Actuators A: Physical, 2018, 269: 22

[9]

YipengL, JingW, ShanshanW, HongjuanY, XinW. J. Lightwave Technol., 2016, 34: 5378

[10]

LiminX, GroganM D W, WadsworthW J, EnglandR, BirksT A. Opt. Express, 2011, 19: 764

[11]

LiminT, JingyiL, EricM. Opt. Express, 2004, 12: 1025

[12]

PavelP, AlexanderP, PeyghambarianN, MasudM. Opt. Lett., 2005, 30: 1273

[13]

LiaoY, WangJ, YangH, WangX, WangS. Sensors and Actuators A: Physical, 2015, 233: 22

[14]

SunL P, LiJ, JinL, RanY, GuanB O. Sensors And Actuators B-Chemical, 2016, 231: 696

[15]

WangK, ZhengJ, HuangH, ChenY, SongY, JiJ, ZhangH. Opt. Express, 2019, 27: 16798

[16]

WangR, LiD, WuH, JiangM, SunZ, TianY, BaiJ, RenZ J I P J. IEEE Photonics Journal, 2017, 9: 1

[17]

AzzuhriS R, AmiriI S, ZulkhairiA S, SalimM A M, RazakM Z A, KhyasudeenM F, AhmadH, ZakariaR, YupapinP J R i P. Results in Physics, 2018, 9: 1572

[18]

ChiavaioliF, TronoC, BaldiniF J A P L. Applied Physics Letters, 2013, 102: 231109

[19]

ShuX, LinZ, BennionI. Journal of Lightwave Technology, 2002, 20: 255

[20]

XiaohongQ, EdwardS F. Appl. Opt., 1995, 34: 3477

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/