Femtosecond laser processing stainless steel foil and its Fourier spectrum detection

Dong-ming Tu , Hao-yue Ma , Xiao-rui Jiang , Hong-liang Liu , Peng-fei Wu , Li-wei Song , Ming-wei Wang

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 471 -476.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 471 -476. DOI: 10.1007/s11801-020-9223-x
Article

Femtosecond laser processing stainless steel foil and its Fourier spectrum detection

Author information +
History +
PDF

Abstract

In this paper, we use femtosecond laser pulse to scribe 304 stainless steel foil, detect the Fourier transform infrared spectrum of the sample before and after processing, confirm the “cold processing” and “thermal processing” and their mutual conversion, and determine the “cold processing” parameter window. The ablation threshold and incubation coefficient of 304 stainless steel foil are calculated, and the effects of scanning speed and effective pulse number on the ablation threshold are analyzed. The ANSYS software is used to simulate the radial and axial temperature distributions of the surface on 304 stainless steel foil sample and the heat-affected zone with a femtosecond laser fluence of 10 J/cm2 and an effective number of pulses of 1 200 are obtained. In the aspect of spectral detection, the Fourier transform infrared spectra of the sample before and after processing are measured and two processing mechanisms of “cold processing” and “hot processing” are confirmed, which proves that we can achieve the conversion between “cold processing” and “hot processing” by changing the laser fluence and determine the “cold processing” laser fluence range.

Cite this article

Download citation ▾
Dong-ming Tu, Hao-yue Ma, Xiao-rui Jiang, Hong-liang Liu, Peng-fei Wu, Li-wei Song, Ming-wei Wang. Femtosecond laser processing stainless steel foil and its Fourier spectrum detection. Optoelectronics Letters, 2020, 16(6): 471-476 DOI:10.1007/s11801-020-9223-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

StuartB C, FeitM D, HermanS, RubenchikA M, ShoreB W, PerryM D, Physical ReviewB. Condensed Matter, 1996, 53: 1749

[2]

KirkwoodS E, van PoptaA C, TsuiY Y, FedosejevsR. Applied Physics A, 2005, 81: 729

[3]

SundaramS K, MazurE. Nature Materials, 2002, 1: 217

[4]

SunH-B, TanakaT, KawataS. Applied Physics Letters, 2002, 80: 3673

[5]

KawataS, SunH B, TanakaT, TakadaK. Nature, 2001, 412: 677

[6]

PerrieW, RushtonA, GillM, FoxP, O’NeillW. Applied Surface Science, 2005, 248: 213

[7]

ShenN, DattaD, SchafferC B, LeducP, IngberD E, MazurE. Mech. Chem. Biosyst., 2005, 2: 17

[8]

ChengJ, LiuC-s, ShangS, LiuD, PerrieW, DeardenG, WatkinsK. Optics & Laser Technology, 2013, 46: 88

[9]

SeoC, AhnD, KimD. Applied Surface Science, 2015, 349: 361

[10]

YangJ, ZhaoY, ZhuX. Applied Physics Letters, 2006, 88: 094101

[11]

DongS N, LiuS Y, LiuF D. Laser Technology, 2018, 42: 03

[12]

LiangJ, LiuW, LiY, LuoZ, PangD. Applied Surface Science, 2018, 456: 482

[13]

XieZ-w, DongS-y, YanS-x. Laser & Optoelectronics Progress, 2018, 55: 031402 in Chinese)

[14]

GiannuzziG, GaudiusoC, Di MundoR, MirenghiL, FraggelakisF, KlingR, LugaràP M, AnconaA. Applied Surface Science, 2019, 494: 1055

[15]

FraggelakisF, GiannuzziG, GaudiusoC, ManekH, MincuzziG, AnconaA. Materials, 2019, 12: 8

[16]

KrügerJ, KautekW. Polymers and Light, Springer, Berlin, Heidelberg, 2004, 168: 247

[17]

WuB Y, DengL M, LiuP, ZhangF, DuanJ, ZengX Y. Applied Surface Science, 2017, 409: 403

[18]

Di NisoF, GaudiusoC, SibillanoT, MezzapesaF P, AnconaA, LugaraP M. Optics Express, 2014, 22: 12200

[19]

JeeY, BeckerM F, WalserR M. JOSA B, 1988, 5: 648

[20]

YuanX-l, SongK-c, ZhangR-t, XuZ-j, MaH-y, WangM-w. Optoelectronics Laser, 2017, 12: 1378(in Chinese)

[21]

Nathala C S R, Ajami A, Husinsky W, Farooq B, Kudryashov S I, Daskalova A, Bliznakova I and Assion A, Applied Physics A 122, 2016.

[22]

Ai Xian-chen, Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese)

AI Summary AI Mindmap
PDF

259

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/