Effect of pH value on photoluminescence properties of Eu3+/Tb3+ co-doped ZnO

Ming-jing Bian , Hong-yan Zhang

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (5) : 355 -359.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (5) : 355 -359. DOI: 10.1007/s11801-020-9210-2
Article

Effect of pH value on photoluminescence properties of Eu3+/Tb3+ co-doped ZnO

Author information +
History +
PDF

Abstract

In this work, we studied the effect of different pH values on morphology, band gap and photoluminescence (PL) properties of Eu3+/Tb3+ co-doped ZnO prepared by coprecipitation method. Experimental results show that alkaline condition is more favorable for the doping of Eu3+ and Tb3+ ions which reduce the band gap and increases the PL intensity of UV emission (385 nm) and visible emission (400—600 nm) of ZnO. Gaussian deconvolution PL spectra show that the defects on the surface of ZnO are decreased when it is synthesized under alkaline conditions. Furthermore, both the intrinsic orange emission of Eu3+ ions (611 nm) and the intrinsic green emission of the Tb3+ ions (495 nm) of ZnO in this case are obtained at the same time. High intensity green and orange emission indicates that Eu3+/Tb3+ co-doped ZnO is a promising PL material and has potential in emission devices.

Cite this article

Download citation ▾
Ming-jing Bian, Hong-yan Zhang. Effect of pH value on photoluminescence properties of Eu3+/Tb3+ co-doped ZnO. Optoelectronics Letters, 2020, 16(5): 355-359 DOI:10.1007/s11801-020-9210-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ParkK, HwangHK, SeoJW, SeoW-S. Energy, 2013, 54: 139

[2]

LiY-T, XuJ-M, TangZ-J, XuT-T, LiX-J. Journal of Alloys and Compounds, 2017, 715: 122

[3]

Cai-FengW, NiL, BoH. Journal of Luminescence, 2018, 204: 424

[4]

KossanyiJ, KouyateD, PouliquenJ, Ronfard-HaretJC, ValatP, OelkrugD, MammelU, KellyGP, WilkinsonF. Journal of Luminescence, 1990, 46: 17

[5]

Xiao-HuiZ, Hai-MingZ, Yu-JieL. Optoelectronics Letters, 2019, 15: 195

[6]

BorkovskaLV, KhomenkovaL, KorsunskaO, KolomysO, StrelchukV, SabovT, VengerE, KryshtabT, MelnichukO, MelnichukL, GuillaumeC, LabbeC, PortierX. Thin Solid Films, 2019, 692: 137634

[7]

ChenL, ZhangJ, ZhangX, LiuF, WangX. Optics Express, 2008, 16: 11801

[8]

ShuyanG, HongjieZ. Applied Physics Letters, 2006, 89: 123

[9]

KumarV, SomS, KumarV, KumarV, NtwaeaborwaOM, CoetseeE, SwartHC. Chemical Engineering Journal, 2014, 255: 541

[10]

Jin-ZhaoH, Shi-YouL, Nan-NanY, Xi-JinX. Optoelectronics Letters, 2014, 10: 161

[11]

ArmelaoL, BottaroG, PascoliniM, SessoloM, TondelloE, BettinelliM, SpeghiniA. Journal of Physical Chemistry C, 2008, 112: 4049

[12]

LuoL, HuangFY, DongGS, FanHH, LiKF, CheahKW, ChenJ. Optical Materials, 2014, 37: 470

[13]

ChandaP, GaurA, KumarA, GaurU K. Applied Surface Science, 2015, 356: 438

[14]

KumarV, SomS, KumarV, KumarV, NtwaeaborwaOM, CoetseeE, SwartHC. Chemical Engineering Journal, 2014, 255: 541

[15]

Jing-WeiC, Jian-PingX, Xiao-SongZ, Xi-PingN, Tong-YanX, TingJ, LanL. Optoelectronics Letters, 2012, 12: 4

[16]

H. Morkoc and Y. S. Park, Semiconductor and Semimertals, Academic Press 52, 1998.

[17]

YeC, FangX, LiG, ZhangL. Applied Physics Letters, 2004, 85: 3035

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/