Design of multi-channel terahertz beam splitter based on Z-shaped metasurface

Wu Pan , Xue-yin Wang , Qi Chen , Xin-yu Ren , Yong Ma

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 437 -440.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 437 -440. DOI: 10.1007/s11801-020-9197-8
Article

Design of multi-channel terahertz beam splitter based on Z-shaped metasurface

Author information +
History +
PDF

Abstract

A reflective beam splitter is proposed and verified. The unit cell of the beam splitter is composed of a metal pattern, a dielectric substrate, and a metallic ground. Each subarray structure of the device is composed of four unit cells, which are gradually rotated at 45°. The horizontal and vertical subarrays form a 4×4 gradient metasurface supercell. In the operating frequency band, the incident linearly polarized terahertz wave is reflected and divided into four beams of approximately equal power but different propagation directions. The proposed terahertz beam splitter based on metasurface has the advantages of small size, low cost and easy processing, and can be applied to terahertz stealth and imaging.

Cite this article

Download citation ▾
Wu Pan, Xue-yin Wang, Qi Chen, Xin-yu Ren, Yong Ma. Design of multi-channel terahertz beam splitter based on Z-shaped metasurface. Optoelectronics Letters, 2020, 16(6): 437-440 DOI:10.1007/s11801-020-9197-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShelbyR A, SmithD R, SchultzS. Science, 2001, 292: 77

[2]

SchurigD, MockJ J, JusticeB J, CummerS A, PendryJ B, StarrA F, SmithD R. Science, 2006, 314: 977

[3]

GaoX, ZhouL, YuX Y, CaoW P, LiH O, MaH F, CuiT J. Optics Express, 2015, 23: 23270

[4]

BerryC W, MooreJ, JarrahiM. Optics Express, 2011, 19: 1236

[5]

BerryC W, JarrahiM. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33: 127

[6]

RizeaA. Opt-Electronics Review, 2012, 20: 96

[7]

PorsA, NielsenM G, EriksenR L, BozhevolnyS. Nano Letters, 2013, 13: 829

[8]

YuN F, AietaF, GenevetP, KatsM, GaburroZ, CapassoF. Nano Letters, 2012, 12: 6328

[9]

GradyN K, HeyesJ E, ChowdhuryD R, ZengY, ReitenM T, AzadA K, TaylorA J, DalvitD A R, ChenH T. Science, 2013, 340: 1304

[10]

YangB, YeW M, YuanX D, ZhouZ H, ZengC. Optics Letters, 2013, 38: 679

[11]

FanR H, ZhouY, RenX P, PengR W, JiangS C, XuD H, XiongX, HuangX R, WangM. Advanced Materials, 2015, 27: 1201

[12]

SchergerB, JördensC, KochM. Optics Express, 2011, 19: 4528

[13]

JiangX Y, YeJ S, HeJ W, WangX K, HuD, FengS F, KanQ, ZhangY. Optics Express, 2013, 21: 30030

[14]

CongL Q, CaoW, ZhangX Q, TianZ, GuJ Q, SinghR J, HanJ G, ZhangW L. Applied Physics Letters, 2013, 103: 171107

[15]

CongL Q, XuN N, GuJ Q, SinghR J, HanJ G, ZhangW L. Laser & Photonics Reviews, 2014, 8: 626

[16]

MoG, LiJ. Applied Optics, 2016, 55: 7093

[17]

WeiM G, XuQ, WangQ, ZhangX Q, LiY F, GuJ Q, TianZ, ZhangX X, HanJ G, ZhangW L. Applied Physics Letters, 2017, 111: 071101

[18]

LeeW S L, NirantarS, HeadlandD, BhaskaranM, SriramS, FumeauxC, WithayachumnankulW. Advanced Optical Materials, 2017, 6: 1700852

[19]

YiH, QuS W, NgK B, WongC K, ChanC H. IEEE Transactions on Antennas and Propagation, 2018, 66: 209

[20]

ZangX F, GongH H, LiZ, XieJ Y, ChengQ Q, ChenL, ShkurinovA P, ZhuY M, ZhuangS L. Applied Physics Letters, 2018, 112: 171111

[21]

JiaM, WangZ L, LiH T, WangX K, LuoW J, SunS L, ZhangY H, QiongZ L. Light: Science & Applications, 2019, 8: 16

[22]

NgK B, ChanC H. THz Sci. Technol., 2016, 9: 45

[23]

SunY Y, HanL, ShiX Y, WangZ N, LiuD H. Acta Phys. Sin, 2013, 62: 104201(in Chinese)

[24]

YueF Y, ZhangC M, ZangX F, WenD D, GerardotB D, ZhangS, ChenX Z. Light: Science & Applications, 2018, 7: 17129

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/