Co-doping method used to improve the charge transport balance in solution processed OLEDs

Jun-tao Hu, Peng Wang, Xue Xiao, Sheng Hu, Kai Xu, Xiang-hua Wang

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 423-427.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 423-427. DOI: 10.1007/s11801-020-9194-y
Article

Co-doping method used to improve the charge transport balance in solution processed OLEDs

Author information +
History +

Abstract

In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes (OLEDs). By changing the ratio of two thermally activated delayed fluorescent (TADF) emitters, we studied the performance of device and its mechanism. A solution processed OLED with a structure of indium tin oxide (ITO, 150 nm)/PEDOT:PSS (30 nm)/CBP:4CzIPN-x%:4CzPN-y% (30 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm) was fabricated. The current efficiencies of 26.6 cd/A and 26.4 cd/A were achieved by the devices with dopant ratio of 6% 4CzIPN:2% 4CzPN and 2% 4CzIPN:6% 4CzPN in emitting material layer (EML), respectively. By investigating the tendency of current density change in devices with different doping ratio, we suggested that the enhancement of the current efficiency should be due to the charge transport balance improvement induced by assist dopant in EML.

Cite this article

Download citation ▾
Jun-tao Hu, Peng Wang, Xue Xiao, Sheng Hu, Kai Xu, Xiang-hua Wang. Co-doping method used to improve the charge transport balance in solution processed OLEDs. Optoelectronics Letters, 2020, 16(6): 423‒427 https://doi.org/10.1007/s11801-020-9194-y

References

[1]
TangC W, VanSlykeS A. Applied Physics Letters, 1987, 12: 913
CrossRef Google scholar
[2]
TangC W, VanSlykeS A, ChenC H. Journal of Applied Physics, 1989, 9: 3610
CrossRef Google scholar
[3]
HuJ Y, PuY J, NakataG, KawataS, SasabeH, KidoJ. Chem Commun (Camb), 2012, 67: 8434
CrossRef Google scholar
[4]
KesslerF, WatanabeY, SasabeH, KatagiriH, NazeeruddinM K, GrätzeM, KidoJ. Journal of Materials Chemistry C, 2013, 6: 1070
CrossRef Google scholar
[5]
MaD, DuanL, QiuY. Dalton Trans, 2016, 14: 6118
CrossRef Google scholar
[6]
SasabeH, KidoJ. Journal of Materials Chemistry C, 2013, 9: 1699
CrossRef Google scholar
[7]
SasabeH, SasabeH, TakamatsuJ, MotoyamaT, WatanabeS, WagenblastG, LangerN, MoltO, FuchsE, LennartzC, KidoJ. Adv Mater, 2010, 44: 5003
CrossRef Google scholar
[8]
TakagiK, NagaseT, KobayashiT, NaitoH. Organic Electronics, 2016, 32: 65
CrossRef Google scholar
[9]
XuL, TangC W, RothbergL J. Organic Electronics, 2016, 32: 54
CrossRef Google scholar
[10]
YangC H, ChengY M, ChiY, HsuC J, FangF C, WongK T, ChouP T, ChangC H, TsaiM H, WuC C. Angew Chem Int Ed Engl, 2007, 14: 2418
CrossRef Google scholar
[11]
SatoK, ShizuK, YoshimuraK, KawadaA, MiyazakiH, AdachiC. Phys Rev Lett, 2013, 24: 247401
CrossRef Google scholar
[12]
YookK S, LeeJ Y. Adv Mater, 2012, 24: 3169
CrossRef Google scholar
[13]
EndoA, SatoK, YoshimuraK, KaiT, KawadaA, MiyazakiH, AdachiC. Applied Physics Letters, 2011, 8: 83320
[14]
DuanL, HouL D, LeeT W, QiaoJ, ZhangD Q, DongG F, WangL D, QiuY. Journal of Materials Chemistry, 2010, 31: 6392
CrossRef Google scholar
[15]
JouJ H, HsuM F, WangW B, ChinC L, ChungY C, ChenC T, ShyueJ J, ShenS M, WuM H, ChangW C, LiuC P, ChenS Z, ChenH Y. Chemistry of Materials, 2009, 13: 2565
CrossRef Google scholar
[16]
JouJ H, LiC J, ShenS M, PengS H, ChenY L, JouY C, HongJ H, ChinC L, ShyueJ J, ChenS P, LiJ Y, WangP H, ChenC C. Journal of Materials Chemistry C, 2013, 27: 4201
CrossRef Google scholar
[17]
JouJ H, KumarS, AgrawalA, LiT H, SahooS. Journal of Materials Chemistry C, 2015, 13: 2974
CrossRef Google scholar
[18]
ChoY J, YookK S, LeeJ Y. Adv Mater, 2014, 38: 6642
CrossRef Google scholar
[19]
Adames PradaR, Ardila VargasA M. Physica B: Condensed Matter, 2014, 455: 85
CrossRef Google scholar
[20]
SeoJ H, KimI J, KimY K, KimY S. Thin Solid Films, 2008, 11: 3614
CrossRef Google scholar
[21]
ForsterT. Discussions of the Faraday Society, 1959, 27: 7
CrossRef Google scholar
[22]
DexterD L. The Journal of Chemical Physics, 1953, 5: 836
CrossRef Google scholar
[23]
YooS I, YoonJ A, KimN H, KimJ W, KangJ S, MoonC B, KimW Y. Journal of Luminescence, 2015, 160: 346
CrossRef Google scholar
[24]
AzizH, PopovicZ D, HuN X. Applied Physics Letters, 2002, 2: 370
CrossRef Google scholar
[25]
KoneznyS J, SmithD L, GalvinM E, RothbergL J. Journal of Applied Physics, 2006, 6: 64509
CrossRef Google scholar
[26]
YangQ, HaoY Y, WangZ G, LiY F, WangH, XuB S. Synthetic Metals, 2012, 3: 398
CrossRef Google scholar
[27]
UoyamaH, GoushiK, ShizuK, NomuraH, AdachiC. Nature, 2012, 28: 234
CrossRef Google scholar
[28]
ZhangY, AzizH. Organic Electronics, 2016, 30: 76
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/