Sharp Fano resonance in 2D photonic crystal and the applications

Bing Chen , De-yuan Chen , Yu Xia , Yan Zhang , Meng-fan Li

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (5) : 349 -354.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (5) : 349 -354. DOI: 10.1007/s11801-020-9190-2
Article

Sharp Fano resonance in 2D photonic crystal and the applications

Author information +
History +
PDF

Abstract

Fano resonance is realized theoretically in a photonic crystal. The structure is composed of a cavity side coupled to a partially transmitting waveguide. By optimizing the structure parameters, asymmetric sharp Fano resonance transmit-tance spectrum is achieved with quality factor of 2 213, extinction ratio of 57 dB and peak loss of 0.2 dB. The sharp spectrum can be used in sensor applications. Such as pressure sensor, the pressure sensitivity is about 9.15 nm/GPa. and for refractive index sensing application, the sensitivity is about 800 nm/RIU, and the maximum of figure of merit can reach 1 000. Besides, this sharp Fano resonance based on photonic crystal has potential applications in optical switches, filters etc. And it can be integrated into optical communications and optical integration circuits.

Cite this article

Download citation ▾
Bing Chen, De-yuan Chen, Yu Xia, Yan Zhang, Meng-fan Li. Sharp Fano resonance in 2D photonic crystal and the applications. Optoelectronics Letters, 2020, 16(5): 349-354 DOI:10.1007/s11801-020-9190-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MarkosP, KuzmiakV. Physics Review A, 2016, 94: 033845

[2]

FanoU. Physics Review, 1961, 124: 1866

[3]

AminM, RamzanR, SiddiquiO. Applied Physics Letters, 2017, 110: 181904

[4]

OsterkrygerA D, De LassonJ R, HeuckM, YuY, MorkJ, GregersenN. Optics Letters, 2016, 41: 2065

[5]

MengZ M, LiangA H, LiZ Y. Journal Applied Physics, 2017, 121: 193102

[6]

LimonovM F, RybinM V, PoddubnyA N, KivsharY S. Nature Photonics, 2017, 11: 543

[7]

NozakiK, TanabeT, ShinyaA, MatsuoS, SatoT, TaniyamaH, NotomiM. Nature Photonics, 2014, 4: 477

[8]

HuskoC, De RossiA, CombriéS, TranQ V, RaineriF, WongC W. Applied Physics Letters, 2009, 94: 021111

[9]

TanabeT, NotomiM, MitsugiS, ShinyaA, KuramochiE. Applied Physics Letters, 2005, 87: 151112

[10]

JoannopoulosJ D, JohnsonS G, WinnJ N, MeadeR D. Photonic Crystal: Molding of Flow of Light, 1995, Princeton, NJ, Princeton University Press: 10

[11]

DongG N, WangY L, ZhangX L. Optics Letters, 2018, 43: 5977

[12]

TaoS B, ChenD Y, WangJ B, QiaoJ, DuanY L. Photonic Sensors, 2016, 6: 137

[13]

LiS L, WangY L, JiaoR Z, WangL L, DuanG Y, YuL. Optics Express, 2017, 25: 3525

[14]

Y. Yu, H. Hu, M. Heuck, C. Peucheret, W. Q. Xue, Y. Hui. Chen, L. Katsuo. O, K. Yvind and J. Mork, Low-Power 10 Gbit/s RZ-OOK All-Optical Modulation Using a Novel Photonic-Crystal Fano Switch, European Conference on Optical Communication IEEE, 1 (2014).

[15]

BekeleD A, YiY, HuH, GuanP Y, OttavianoL, GaliliM, OxenloweL K, YvindK, MorkJ. Optics Letters, 2018, 43: 955

[16]

BekeleD A, YuY, HuH, GuanP Y, OttavianoL, GaliliM, OxenloweL K, YvindK, MorkJ. Optics Express, 2018, 26: 19596

[17]

FanS H, SuhW, JoannopoulosJ D. Journal of the Optical Society of America A-Optics Image Science and Vision, 2003, 20: 569

[18]

HeuckM, KristensenP T, ElesinY, MorkJ. Optics Letters, 2013, 38: 2466

[19]

YuY, HeuckM, HuH, XueW Q, PeucheretC, ChenY H, OxenloweL K, YvindK, MorkJ. Applied Physics Letters, 2014, 105: 061117

[20]

YuY, ChenY H, HuH, XueW Q, YvindK, MorkJ. Laser & Photonics Reviews, 2015, 9: 241

[21]

YuP, HuT, QiuH Y, GeF F, XiaoH Y, JiangQ, YangJ Y. Applied Physics Letters, 2013, 103: 091104

[22]

GanS W, WangH Q, LiangJ W, DaiX Y, XiangY J. IEEE Sensors Journal, 2019, 19: 8675

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/