Synthesis and opto-electrical properties of Cu2NiSnS4 nanoparticles using a facile solid-phase process at low temperature

Shi-na Li , Rui-xin Ma , Jian-wen Niu

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 401 -404.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 401 -404. DOI: 10.1007/s11801-020-9188-9
Article

Synthesis and opto-electrical properties of Cu2NiSnS4 nanoparticles using a facile solid-phase process at low temperature

Author information +
History +
PDF

Abstract

Cu2NiSnS4 nanoparticles were prepared for the first time using a facile solid-phase process at a temperature of 180°C. The crystalline structure, morphology and optical properties of the Cu2NiSnS4 nanoparticles were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM) and ultraviolet-visible (UV-vis) spectrophotometer. The band gap and conversion efficiency of Cu2NiSnS4 nanoparticles were studied at various temperature. The results showed that the Cu2NiSnS4 nanoparticles exhibited an optimum band gap of 1.58 eV and a conversion efficiency of 0.64% at 180 °C, indicating that it maybe be useful in low-cost thin film solar cells.

Cite this article

Download citation ▾
Shi-na Li, Rui-xin Ma, Jian-wen Niu. Synthesis and opto-electrical properties of Cu2NiSnS4 nanoparticles using a facile solid-phase process at low temperature. Optoelectronics Letters, 2020, 16(6): 401-404 DOI:10.1007/s11801-020-9188-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LieS, LeowS W, BishopD M, GuoM, Izquierdo-RocaV, GunawanO, WongL H. ACS Applied Materials & Interfaces, 2019, 11: 25824

[2]

ZitiA, HartitiB, LabrimH, FadiliS, NkuissiH J T, RidahA, TahriM, TheveninP. Applied Physics, 2019, 125: 218

[3]

SalomeP M P, MalaquiasJ, FernandesP A, FerreiraM S, da CunhaA F, LeitaoJ P, GonzalezJ C, MatinagaF M. Solar Energy Materials and Solar Cells, 2012, 101: 147

[4]

GeJ, WuY H, ZhangC J, ZuoS H, JiangJ C, MaJ H, YangP X, ChuJ H. Applied Surface Science, 2012, 258: 7250

[5]

GuoQ, FordG M, YangW C, WalkerB C, StachE A, HillhouseH W, AgrawalR. Journal of the American Chemical Society, 2010, 132: 17384

[6]

CuiY, DengR P, WangG, PanD C. Journal of the American Chemical Society, 2012, 22: 23136

[7]

YanC, HuangC, YangJ, LiuF Y, LiuJ, LaiY Q, LiJ, LiuY X. Chemical Communications, 2012, 48: 2603

[8]

WangW, ShenH, YaoH, LiJ Z. Materials Letters, 2014, 125: 183

[9]

GillorinA, BalocchiA, MarieX, DufourP, Chane-ChingJ Y. Journal of Materials Chemistry, 2011, 21: 5615

[10]

ZhongJ, WangQ, CaiW. Materials Letters, 2015, 150: 69

[11]

LiangX L, GuoP, WangG, DengR P, PanD C, WeiX H. RSC Advances, 2012, 2: 5044

[12]

ChenL L, DengH M, TaoJ H, CaoH Y, HuangL, SunL, YangP X, ChuJ H. RSC Advances, 2015, 5: 84295

[13]

YongC, GangW, PanD. Journal of Materials Chemistry, 2012, 22: 12471

[14]

LiC, CaoM, HuangJ, WangL J, ShenY. Materials Letters, 2015, 140: 170

[15]

WangT X, LiY G, LiuH R, LiH, ChenS X. Materials Letters, 2014, 124: 148

[16]

KambleA, MokuralaK, GuptaA, MallickS, BhargavaP. Materials Letters, 2014, 137: 440

[17]

SarkarS, DasB, MidyaP R, DasG C, ChattopadhyayK K. Materials Letters, 2015, 152: 155

[18]

ChenH J, FuS W, TsaiT C, ShihC F. Materials Letters, 2015, 166: 215

[19]

MaR X, YangF, LiS N, ZhangX Y, LiX, ChengS Y, LiuZ L. Applied Surface Science, 2016, 368: 8

[20]

LiS N, MaR X, LiD R, YangF, ZhangX Y, LiX, ZhuH M. Optoelectronics Letters, 2015, 11: 277

[21]

WangS, MaR X, WangC Y, LiS N, WangH. Applied Surface Science, 2017, 422: 39

[22]

WangS, MaR X, WangC Y. S. N. Li and H. Wang. Optoelectronics Letters, 2017, 13: 291

[23]

LiS N, MaR X, WangC Y. International Journal of Minerals, Metallurgy and Materials, 2018, 25: 310

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/