Tunable frequency-multiplying optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator incorporating a phase-shifted fiber Bragg grating

Yao Zhang , Ti-gang Ning , Jing Li , Jing-jing Zheng , Ling Liu , Xiao-wei Dong , Li Pei

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 405 -409.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 405 -409. DOI: 10.1007/s11801-020-9172-4
Article

Tunable frequency-multiplying optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator incorporating a phase-shifted fiber Bragg grating

Author information +
History +
PDF

Abstract

A tunable frequency-multiplying optoelectronic oscillator (OEO) based on a dual-parallel Mach-Zehnder modulator (DPMZM) is proposed and experimentally demonstrated. In the proposed system, the tunable fundamental microware signal is generated by a tunable optoelectronic oscillator incorporating a phase-shifted fiber Bragg grating (PS-FBG). By adjusting the DC bias of the DPMZM, the frequency-doubled microwave signal with a tunable frequency range from 11 GHz to 20 GHz and the frequency-quadrupled microwave signal with a tunable frequency range from 22.5 GHz to 26 GHz are generated. The phase noises of the fundamental, frequency-doubled and frequency-quadrupled signals at 10 kHz offset frequency are −105.9 dBc/Hz, −103.3 dBc/Hz and −86.2 dBc/Hz, respectively.

Cite this article

Download citation ▾
Yao Zhang, Ti-gang Ning, Jing Li, Jing-jing Zheng, Ling Liu, Xiao-wei Dong, Li Pei. Tunable frequency-multiplying optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator incorporating a phase-shifted fiber Bragg grating. Optoelectronics Letters, 2020, 16(6): 405-409 DOI:10.1007/s11801-020-9172-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Steve YaoX, MalekiL. Journal of the Optical Society of America B, 1996, 13: 1725

[2]

X. Steve Yao and Lute Maleki, International Topical Meeting on Microwave Photonics, 1996.

[3]

HidemiT. Journal of Lightwave Technology, 2009, 27: 3777

[4]

ShinM, KumarP. IEEE Photonics Technology Letters, 2007, 19: 1726

[5]

SalikE, NanY, MalekiL. IEEE Photonics Technology Letters, 2007, 19: 444

[6]

TsuchidaH, SuzukiM. IEEE Photonics Technology Letters, 2005, 17: 211

[7]

YaoJ. IEEE Microwave Magazine, 2015, 16: 46

[8]

ZhangJ, GaoL, YaoJ. IEEE Photonics Technology Letters, 2014, 26: 326

[9]

MerkleinM, StillerB, Kabakova IrinaV, Mutugala UdaraS, VuK, Madden StephenJ, Eggleton BenjaminJ, SlavikR. Optics Letters, 2016, 41: 4633

[10]

PanS, YaoJ. IEEE Photonics Technology Letters, 2009, 21: 929

[11]

BoY, Xiao-fengJ, HaoC, Xian-minZ, Shi-lieZ, Shi-huanZ, Hao-shuoC, TangdionggaE, KoonenT. IEEE Photonics Technology Letters, 2012, 24: 1051

[12]

Jian-yuZ, Wen-huiS, Wen-tingW, You-wanT, Wei-YuW, XinW, Hai-qingY, Jian-guoL, Ning-huaZ. IEEE Photonics Technology Letters, 2015, 27: 1864

[13]

Wang-zheL, Jian-pingY. IEEE Photonics Technology Letters, 2012, 24: 812

[14]

Li Pei-xuan, Pan Wei, Zou Xi-hua, Liu Xin-kai, Yan Lian-shan and Luo Bin, 2015 14th International Conference on Optical Communications and Networks (ICOCN), 2015.

[15]

JunJ, Fu-shenC, Cheng-xinL, Qi-mengD, Xian-yanZ. Photoelectron Laser, 2015, 9: 1652(in Chinese)

[16]

Han Xiao-xiao, Xu En-ming, Wang Fei and Chen Cheng, Study on Optical Communications, 2016. (in Chinese)

[17]

Zong-huaH, Kui-yingN, YiR, Jiang-yongX, Wen-longW. Optical Communication Technology, 2019, 43: 17(in Chinese)

[18]

Wang-zheL, MingL, Jian-pingY. IEEE Transactions on Microwave Theory and Techniques, 2012, 60: 1287

[19]

Yun-xinW, Jia-haoX, TaoZ, Da-yongW, Deng-caiY, XinZ. Infrared and Laser Engineering, 2018, 47: 357(in Chinese)

[20]

EliyahuD, SeidelD, MalekiL. IEEE Transactions on Microwave Theory and Techniques, 2008, 56: 449

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/