Research on separation and enhancement of speech micro-vibration from macro motion

Hong-kai Chen, Ting-feng Wang, Shi-song Wu, Yuan-yang Li

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 462-466.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 462-466. DOI: 10.1007/s11801-020-9169-z
Article

Research on separation and enhancement of speech micro-vibration from macro motion

Author information +
History +

Abstract

Based on the 1 550 nm all-fiber pulsed laser Doppler vibrometer (LDV) system independently developed by our laboratory, empirical mode decomposition (EMD) and optimally modified Log-spectral amplitude estimator (OM-LSA) algorithms are associated to separate the speech micro-vibration from the target macro motion. This combined algorithm compensates for the weakness of the EMD algorithm in denoising and the inability of the OM-LSA algorithm on signal separation, achieving separation and simultaneous acquisition of the macro motion and speech micro-vibration of a target. The experimental results indicate that using this combined algorithm, the LDV system can functionally operate within 30 m and gain a 4.21 dB promotion in the signal-to-noise ratio (SNR) relative to a traditional OM-LSA algorithm.

Cite this article

Download citation ▾
Hong-kai Chen, Ting-feng Wang, Shi-song Wu, Yuan-yang Li. Research on separation and enhancement of speech micro-vibration from macro motion. Optoelectronics Letters, 2020, 16(6): 462‒466 https://doi.org/10.1007/s11801-020-9169-z

References

[1]
Sugimoto T, Sugimoto K, Uechi I, Ohdaira T, Kawakami A and Utagawa N, Long Distance Measurement over 30m by High-speed Noncontact Acoustic Inspection Method Using Acoustic Irradiation Induced Vibration, 2017 IEEE International Ultrasonics Symposium (IUS), 1 (2017).
[2]
Yun-PengW, Yi-HuaHU, Li-RenG, Shi-LongX. Acta Photonica Sinica, 2017, 7: 135(in Chinese)
[3]
KurvinenE, JohnM, MikkolaA. Measurement, 2020, 150: 107091
CrossRef Google scholar
[4]
FrehlichR, HannonS M, HendersonS W. Boundary-Layer Meteorology, 1998, 86: 233
CrossRef Google scholar
[5]
ChongW, HaiyunX, YanpingL, ShengfuL, XiankangD. Optics Communications, 2018, 424: 48
CrossRef Google scholar
[6]
NingX, SabatierJ M. IEEE Geoscience and Remote Sensing Letters, 2004, 1: 292
CrossRef Google scholar
[7]
AranchukV, LalA K, HessC F, SabatierJ M. Optical Engineering, 2006, 45: 104302
CrossRef Google scholar
[8]
KaplanA D, OrSullivanJ A, SirevaagE J, LaiP, RohrbaughJ W. IEEE Transactions on Biomedical Engineering, 2012, 59: 744
CrossRef Google scholar
[9]
YiJ, LiuW, ChenS, BackmanV, SheibaniN, SorensonC M, FawziA A, LinsenmeierR A, ZhangH F. Light: Science & Applications, 2015, 4: 334
CrossRef Google scholar
[10]
WissmeyerG, PleitezM A, RosenthalA, NtziachristosV. Light: Science & Applications, 2018, 7: 53
CrossRef Google scholar
[11]
Avargel Y and Cohen I, 2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, 109 (2011).
[12]
T, GuoJ, ZhangH-y, YanC-h, WangC-j. Optoelectronics Letters, 2017, 13: 275
CrossRef Google scholar
[13]
T, HanX, WuS, Liy. Optics Communications, 2019, 440: 117
CrossRef Google scholar
[14]
Chun-HuiY, Ting-FengW, Yuan-YangL, TaoL, Shi-SongW. Chinese Physics B, 2019, 28: 030701
CrossRef Google scholar
[15]
Y. Deng, 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), 1 (2016).
[16]
PengS, T, WuS, YanC, ZhangH. Applied Acoustics, 2019, 143: 165
CrossRef Google scholar
[17]
ShisongW, YuanyangL, TaoL, HongkaiC, ChunhuiY, TingfengW, JinG. Chinese Optics Letters, 2019, 17: 051201
[18]
HuangN E, ShenZ, LongS R, WuM C, ShihH H, ZhengQ, YenN C, TungC C, LiuH H. Proceedings A, 1998, 454: 903
[19]
CohenI, BerdugoB. Signal Processing, 2001, 81: 2403
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/