Design and simulation of bias-selectable few photon dual-colour photodetector operating in visible and near-infrared regions

Lei Cao , Ying Hou , Li Zhang

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (5) : 333 -337.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (5) : 333 -337. DOI: 10.1007/s11801-020-9165-3
Article

Design and simulation of bias-selectable few photon dual-colour photodetector operating in visible and near-infrared regions

Author information +
History +
PDF

Abstract

In this paper, we report the design and simulation of a bias-selectable dual-band photodetector operating in the visible (VIS) and near infrared (NIR) regions. The photodetector consists of two back-to-back avalanche photodiodes (APDs) with InGaAs and Si absorption layers respectively. The structure and electrical and optical properties of the dual-color photodetector were designed and simulated by exploiting Silvaco software. The results obtained on the basis of numerical simulation include the current-voltage, capacitance-voltage, spectral response, etc. The optical simulation shows the detection capability in the VIS and NIR ranges, cut-off wavelengths of 1.0 µm and 1.8 µm depending on the applied bias polarity. Comparing with using the PIN structure as element device, the dual-band photodetector based on the APD configuration could detect the very weak signal, realizing few photons, even single photon detection.

Cite this article

Download citation ▾
Lei Cao, Ying Hou, Li Zhang. Design and simulation of bias-selectable few photon dual-colour photodetector operating in visible and near-infrared regions. Optoelectronics Letters, 2020, 16(5): 333-337 DOI:10.1007/s11801-020-9165-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AriyawansaG, RinzanM B M, MatsikS G, HastingsG, PereraA G U, LiuH C, BuchananM, SprouleG I, GavrilenkoV I, KuznetsovV P. Appl. Phys. Lett., 2006, 89: 061112

[2]

AriyawansaG, RinzanM B M, EsaevD G, MatsikS G, PereraA G U, LiuH C, ZvonkovB N, GavrilenkoV I. Appl. Phys. Lett., 2005, 86: 143510

[3]

ShenA, LiuH C, GaoM, DupontE, BuchananM, EhretJ, BrownG J, SzmulowiczF. Appl. Phys. Lett., 2000, 77: 2400

[4]

NguyenT D, KimJ O, KimY H, KimE T, NguyenQ L, LeeS J. AIP Advances, 2018, 8: 025015

[5]

AriyawansaG, RinzanM B M, StrassburgM, DietzN, PereraA G U, MatsikS G, AsgharA, FergusonI T, LuoH, LiuH C. Appl. Phys. Lett., 2006, 89: 141122

[6]

KayaY, RavikumarA, ChenG, TamargoM C, ShenA, GmachlC. AIP Advances, 2018, 8: 075105

[7]

SimolaE T, IacovoA D, FrigerioJ, BallabioA, FabbriA, IsellaG, ColaceL. Opt. Express, 2019, 27: 8529

[8]

SorianelloV, PernaA, ColaceL, AssantoG, LuanH C, KimerlingL C. Appl. Phys. Lett., 2008, 93: 111115

[9]

SunX L, AbshireJ B, BeckJ D, MitraP, ReiffK, YangG N. Opt. Express, 2017, 25: 16589

[10]

FarrellA C, MengX, RenD K, KimH, SenanayakeP, HsiehN Y, RongZ X, ChangT Y, AzizurR K M, HuffakerD L. Nano Lett., 2019, 16: 582

[11]

ParksJ W, SmithA W, BrennanK F, TarofL E. IEEE Trans. Electron. Dev., 1996, 43: 2113

[12]

AcerbiF, AntiM, TosiA, ZappaF. IEEE Photon. J., 2013, 5: 6800209

[13]

MaimonS, WicksG W. Appl. Phys. Lett., 2006, 89: 151109

[14]

SavichG R, PedrazzzniJ R, SidorD E, WicksG W. Infrared Phys. Technol., 2013, 59: 152

[15]

CampbellJ C. J. Lightw. Technol., 2007, 295: 10

[16]

CaoS, ZhaoY, FengS, ZuoY, ZhangL, ChengB, LiC. Nanoscale Res. Lett., 2019, 14: 3

[17]

CaoS, ZhaoY, RehmanS U, FengS, ZuoY, LiC, ZhangL, ChengB, WangQ. Nanoscale Res. Lett., 2018, 13: 158

[18]

KeS, LinS, HuangW, WangJ, ChengB, LiangK, LiC, ChenS. J. Phys. D: Appl. Phys., 2017, 50: 055106

[19]

LiL, ZhouD, LuH, LiuW, MoX, RenF, ChenD, WangR, LiG, ZhangR, ZhengY. IEEE Photon. J., 2017, 9: 6804207

[20]

WangL, HanS, XiaW, LeiJ. Rev. Sci. Instrum., 2018, 89: 023105

[21]

PiccioneB, JiangX, ItzlerM A. Opt. Express, 2016, 24: 10636

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/