Broadband second-harmonic generation in a tapered PPLN waveguide

Wei Guo , Huai-xi Chen , Xin-bin Zhang , Wen-jian Li , Dismas K Choge , Guang-wei Li , Wan-guo Liang

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 252 -255.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 252 -255. DOI: 10.1007/s11801-020-9156-4
Article

Broadband second-harmonic generation in a tapered PPLN waveguide

Author information +
History +
PDF

Abstract

We demonstrate a period poled tapered lithium niobate waveguide and study second harmonic generation (SHG) in this device for the purpose of broadening the quasi-phase matching (QPM) acceptance bandwidth. The finite-difference beam-propagation method is used to simulate the guided modes and calculate the effective indices. The simulation results show that by tapering the width of the cross section linearly, the phase mismatch between a specific input wavelength and its SHG signal can be varied along the propagation length. Ideal SHG phase-matching conditions for a wide range of input wavelengths in communication band from 1 542.5 nm to 1 553.5 nm can be satisfied in different positions of the waveguide.

Cite this article

Download citation ▾
Wei Guo, Huai-xi Chen, Xin-bin Zhang, Wen-jian Li, Dismas K Choge, Guang-wei Li, Wan-guo Liang. Broadband second-harmonic generation in a tapered PPLN waveguide. Optoelectronics Letters, 2020, 16(4): 252-255 DOI:10.1007/s11801-020-9156-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NishidaY, MiyazawaH, AsobeM, TadanagaO, SuzukiH. IEEE Photonics Technology Letters, 2005, 17: 1049

[2]

LangrockC, DiamantiE, RoussevR V, YamamotoY, FejerM M. Optics Letters, 2005, 30: 1725

[3]

ImeshevG, ArboreM A, KasrielS, FejerM M. Journal of the Optical Society of America B, 2000, 17: 1420

[4]

TanzilliS, TittelW, De RiedmattenH, ZbindenH, BaldiP, De MicheliM, OstrowskyDB, GisinN. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 2002, 18: 155

[5]

BockM, LenhardA, ChunnilallC, BecherC. Optics Express, 2016, 24: 23992

[6]

UmekiT, TadanagaO, AsobeM, MiyamotoY, TakenouchiH. Optics Express, 2014, 22: 2473

[7]

SabouriS G, KhorsandiA. Journal of the Optical Society of America B, 2016, 33: 2493

[8]

YangS D, M WeinerA, ParameswaranK R, FejerM M. Optics Letters, 2004, 29: 2070

[9]

TehranchiA, KashyapR. Journal of Lightwave Technology, 2008, 26: 343

[10]

LiuT, DjordjevicI B, SongZ, ChenY, ZhangR, ZhangK, ZhaoW, LiB. Optics Express, 2016, 24: 10946

[11]

ZengX, AshiharaS, WangZ, WangT, ChenY, ChaM. Optics Express, 2009, 17: 16877

[12]

ChogeD K, ChenH X, XuY B, GuoL, LiG W, LiangW G. Applied Optics, 2018, 57: 5459

[13]

DriscollJ B, OphirN, GroteR R, DadapJ I, PanoiuN C, BergmanK, OsgoodR M. Optics Express, 2012, 20: 9227

[14]

XiongX, ZouCL, GuoX, TangH X, RenX F, GuoG C. OSA Continuum, 2018, 1: 1349

[15]

KimB M, SongH W, ChoY K, HongJ P. Journal of the Korean Physical Society, 2014, 65: 625

[16]

DwariS, ChakrabortyA, SanyalS. Progress in Electromagnetics Research, 2006, 64: 219

[17]

MuJ, HuangW P. Optics Letters, 2011, 36: 1026

[18]

GayerO, SacksZ, GalunE, ArieA. Applied Physics B, 2008, 91: 343

[19]

MatsuokaJ, KitamuraN, FujinagaS, KitaokaT, YamashitaH. Journal of Non-Crystalline Solids, 1991, 135: 86

[20]

ChungI, DagliN. IEEE Journal of Quantum Electronics, 1990, 26: 1335

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/