Effect of electron beam evaporation process parameters on infrared refractive index of Ge film

Kun Li, Yu-qing Xiong, Hu Wang, Kai-feng Zhang, Ling-mao Xu, Xue-lei Li, Hui Zhou

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 298-302.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 298-302. DOI: 10.1007/s11801-020-9152-8
Article

Effect of electron beam evaporation process parameters on infrared refractive index of Ge film

Author information +
History +

Abstract

Ge films were prepared at different deposition temperatures and ion source bias voltage using the electron beam evaporation. The infrared refractive index was obtained by spectral inversion. Results show that the refractive index becomes larger as the deposition temperature increases. The maximum refractive index at the wavelength of 4 000 nm is 4.274 with the deposition temperatures of 210 °C. The refractive index of film decreases first and then increases as the bias voltage increases. When the ion source bias voltage is 120 V, the refractive index of the film is the smallest. The difference in extinction coefficient of Ge films prepared by different process parameters is small.

Cite this article

Download citation ▾
Kun Li, Yu-qing Xiong, Hu Wang, Kai-feng Zhang, Ling-mao Xu, Xue-lei Li, Hui Zhou. Effect of electron beam evaporation process parameters on infrared refractive index of Ge film. Optoelectronics Letters, 2020, 16(4): 298‒302 https://doi.org/10.1007/s11801-020-9152-8

References

[1]
MoghadamRZ, AhmadvandH, JannesariM. Infrared Physics & Technology, 2016, 75: 18
CrossRef Google scholar
[2]
JieP, Zi-quanL, Jing-songL, MingJ, QiX. Journal of Materials Engineering, 2014, 9: 32 in Chinese)
CrossRef Google scholar
[3]
DongQ, XianW, Yong-zhiC, Rong-zhouG, Bo-wenL. Optical Materials, 2016, 62: 52
CrossRef Google scholar
[4]
FangW, Yong-zhiC, XianW, DongQ, Rong-zhouG. Optical Materials, 2018, 75: 373
CrossRef Google scholar
[5]
BeltiukovA, ValeevR, RomanovE, MukhgalinV. Physica Status Solidi (c), 2014, 11: 1452
CrossRef Google scholar
[6]
JensenJS, PedersenTL, PereiraR, ChevallierJ, HansenJ, NielsenB, LarsenAN. Applied Physics A: Materials Science & Processing, 2006, 83: 41
CrossRef Google scholar
[7]
UchidaY, FunayamaT, KogureY, YehW. Japanese Journal of Applied Physics, 2016, 55: 031303
CrossRef Google scholar
[8]
Wei-gangZ, Guo-yueX, XiaoS, HuiM, LeiL. Photonics and Nanostructures, 2015, 14: 46
CrossRef Google scholar
[9]
LequimeM, NadjiS, StojcevskiD, KocC, Grézes-BessetC, LumeaJ. Applied Optics, 2017, 56: 181
CrossRef Google scholar
[10]
Ling-maoX, HuiZ, Kai-fengZ, JunZ, KunL, Duo-shuW. J. Infrared Millim. Waves, 2018, 7: 11
[11]
Jin-faT, Pei-fuG, XuL, Hai-fengL. Modern Optical Thin Film Technology, 2007, Hangzhou, Zhejiang University Press
[12]
Yin-huaZ, Ke-pengZ, WeiH, Sheng-mingX. Optik, 2018, 170: 321
CrossRef Google scholar
[13]
Kai-pengL, Duo-shuW, ChenL, Ji-zhouW, Mao-jinD, LingZ. Infrared and Laser Engineering, 2015, 44: 1048(in Chinese)

Accesses

Citations

Detail

Sections
Recommended

/