Effect of electron beam evaporation process parameters on infrared refractive index of Ge film

Kun Li , Yu-qing Xiong , Hu Wang , Kai-feng Zhang , Ling-mao Xu , Xue-lei Li , Hui Zhou

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 298 -302.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 298 -302. DOI: 10.1007/s11801-020-9152-8
Article

Effect of electron beam evaporation process parameters on infrared refractive index of Ge film

Author information +
History +
PDF

Abstract

Ge films were prepared at different deposition temperatures and ion source bias voltage using the electron beam evaporation. The infrared refractive index was obtained by spectral inversion. Results show that the refractive index becomes larger as the deposition temperature increases. The maximum refractive index at the wavelength of 4 000 nm is 4.274 with the deposition temperatures of 210 °C. The refractive index of film decreases first and then increases as the bias voltage increases. When the ion source bias voltage is 120 V, the refractive index of the film is the smallest. The difference in extinction coefficient of Ge films prepared by different process parameters is small.

Cite this article

Download citation ▾
Kun Li, Yu-qing Xiong, Hu Wang, Kai-feng Zhang, Ling-mao Xu, Xue-lei Li, Hui Zhou. Effect of electron beam evaporation process parameters on infrared refractive index of Ge film. Optoelectronics Letters, 2020, 16(4): 298-302 DOI:10.1007/s11801-020-9152-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MoghadamRZ, AhmadvandH, JannesariM. Infrared Physics & Technology, 2016, 75: 18

[2]

JieP, Zi-quanL, Jing-songL, MingJ, QiX. Journal of Materials Engineering, 2014, 9: 32 in Chinese)

[3]

DongQ, XianW, Yong-zhiC, Rong-zhouG, Bo-wenL. Optical Materials, 2016, 62: 52

[4]

FangW, Yong-zhiC, XianW, DongQ, Rong-zhouG. Optical Materials, 2018, 75: 373

[5]

BeltiukovA, ValeevR, RomanovE, MukhgalinV. Physica Status Solidi (c), 2014, 11: 1452

[6]

JensenJS, PedersenTL, PereiraR, ChevallierJ, HansenJ, NielsenB, LarsenAN. Applied Physics A: Materials Science & Processing, 2006, 83: 41

[7]

UchidaY, FunayamaT, KogureY, YehW. Japanese Journal of Applied Physics, 2016, 55: 031303

[8]

Wei-gangZ, Guo-yueX, XiaoS, HuiM, LeiL. Photonics and Nanostructures, 2015, 14: 46

[9]

LequimeM, NadjiS, StojcevskiD, KocC, Grézes-BessetC, LumeaJ. Applied Optics, 2017, 56: 181

[10]

Ling-maoX, HuiZ, Kai-fengZ, JunZ, KunL, Duo-shuW. J. Infrared Millim. Waves, 2018, 7: 11

[11]

Jin-faT, Pei-fuG, XuL, Hai-fengL. Modern Optical Thin Film Technology, 2007, Hangzhou, Zhejiang University Press

[12]

Yin-huaZ, Ke-pengZ, WeiH, Sheng-mingX. Optik, 2018, 170: 321

[13]

Kai-pengL, Duo-shuW, ChenL, Ji-zhouW, Mao-jinD, LingZ. Infrared and Laser Engineering, 2015, 44: 1048(in Chinese)

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/