A continuous 1 052 nm and 1 061 nm dual-wavelength Nd:YAG laser

Li Liu, Cong Dai, Xiao-zhong Wang

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 181-184.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 181-184. DOI: 10.1007/s11801-020-9138-6
Article

A continuous 1 052 nm and 1 061 nm dual-wavelength Nd:YAG laser

Author information +
History +

Abstract

Exploiting a specially designed Fabry-Perot filter as output coupler, a continuous 1 052 nm and 1 061 nm dual-wavelength laser is realized. The threshold, slope efficiency and maximum power of the 1 052 nm and 1 061 nm dual-wavelength laser are 2.55 W, 17.5% and 571 mW, respectively. The competition and coexistent relationships between 1 052 nm, 1 061 nm and 1 064 nm are analyzed. Involved non-degenerate Stark energy level structures are used to classify dual-wavelength lasers. According to this method, dual-wavelength lasers can be classified as different upper and lower non-degenerate Stark energy levels, the same upper but different lower Stark energy levels, different upper but the same lower Stark energy levels. Representative Nd:YAG dual-wavelength lasers are classified according to this criterion. It is found that the realization of front two type lasers is easy and that of third type lasers is challenging. This method can be used as a level of difficulty reference for the realization of dual-wavelength lasers.

Cite this article

Download citation ▾
Li Liu, Cong Dai, Xiao-zhong Wang. A continuous 1 052 nm and 1 061 nm dual-wavelength Nd:YAG laser. Optoelectronics Letters, 2020, 16(3): 181‒184 https://doi.org/10.1007/s11801-020-9138-6

References

[1]
WalshB M. Laser Phys., 2010, 20: 622
CrossRef Google scholar
[2]
LinH F, ZhuW Z, XiongF B, RuanJ J. Appl. Opt., 2017, 56: 948
CrossRef Google scholar
[3]
ChengH P, LiuY C, HuangT L, LiangH C, ChenY F. Photon. Res., 2018, 6: 815
CrossRef Google scholar
[4]
LiC Y, BoY, XuJ L, TianC Y, PengQ J, CuiD F, XuZ Y. Opt. Commun., 2011, 284: 4574
CrossRef Google scholar
[5]
PonarinaMV, OkhrimchukAG, RybinMG, SmayevMP, ObraztsovaED, SmirnovAV, ZhluktovaIV, KamyninVA, DolmatovTV, BukinVV, ObraztsovPA. Quantum Electronics, 2019, 49: 365
CrossRef Google scholar
[6]
Abdul GhaniB, HammadiM. Optik, 2013, 124: 622
CrossRef Google scholar
[7]
ChenL J, WangZ P, ZhuangS D, YuH H, ZhaoY G, GuoL, XuX G. Opt. Lett., 2011, 36: 2554
CrossRef Google scholar
[8]
ZhangL, WeiZ, FengB, LiD, ZhangZ. Opt. Commun., 2006, 264: 51
CrossRef Google scholar
[9]
HuangT L, SungC L, ChengH P, ChoC Y, LiangH C, SuK W, HuangK F, ChenY F. Opt. Express, 2016, 24: 22189
CrossRef Google scholar
[10]
WangX Z, WangZ F, BuY K, ChenL J, CaiG X, CaiZ P. IEEE Photonics J., 2014, 6: 1501607
[11]
WangZ F, WangX Z, CaiM C, BuY K, ChenL J, CaiG X. Opt. Commun., 2014, 330: 143
CrossRef Google scholar
[12]
WangZ F, WangX Z, BuY K, ChenL J, CaiG X. J. Opt. (India), 2015, 44: 195
CrossRef Google scholar
[13]
WangX Z, WangZ F, BuY K, LiuZ, ChenL J, CaiG X, CaiZ P, DawesJ M. IEEE Photon. Technol. Lett., 2014, 26: 1983
CrossRef Google scholar
[14]
WangX Z, WangZ F, BuY K, ChenL J, CaiG X, CaiZ P, ChenN. Appl. Opt., 2015, 55: 879
CrossRef Google scholar
[15]
WangX Z, YuanH Y, WangM S, HuangW C. Opt. Commun., 2016, 376: 67
CrossRef Google scholar
[16]
MacleodHA. Thin-Film Optical Filters, 2001, 3rd ed.Bristol and Philadelphia, Institute of Physics Publishing
CrossRef Google scholar
[17]
FanT Y, ByerR L. IEEE J. Quantum Electron., 1988, 24: 895
CrossRef Google scholar
[18]
SinghS, SmithR G, Van UitertL G. Phys. Rev. B, 1974, 10: 2566
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/