Optical performance of hybrid dielectric loaded plasmonic waveguide using PTFE for nano-scale light confinement

Pintu Kumar, Dharmendra Kumar Singh, Rakesh Ranjan

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 284-289.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 284-289. DOI: 10.1007/s11801-020-9119-9
Article

Optical performance of hybrid dielectric loaded plasmonic waveguide using PTFE for nano-scale light confinement

Author information +
History +

Abstract

Different characteristics of fundamental mode of hybrid dielectric loaded plasmonic waveguide have been explored at 1 550 nm wavelength, to resolve the issue of large propagation loss and diffraction limit with minimal waveguide dimension. Propagation length of 432 um has been achieved with the optimal dimension of 200 nm×40 nm. Through the numerical simulation results, the effective area of 0.021 urn2 and normalized intensity of 40.71 µ−2 in the spacer region of the waveguide have been realized. To accomplish the ultra-compact directional coupler, the smaller coupling length of about 1.42 µm has been achieved. PTFE-based waveguide can be highly beneficial for the realization of monolithic integration with active optical devices.

Cite this article

Download citation ▾
Pintu Kumar, Dharmendra Kumar Singh, Rakesh Ranjan. Optical performance of hybrid dielectric loaded plasmonic waveguide using PTFE for nano-scale light confinement. Optoelectronics Letters, 2020, 16(4): 284‒289 https://doi.org/10.1007/s11801-020-9119-9

References

[1]
YangR, LuZ. International Journal of Optics, 2012, 2012: 258013
CrossRef Google scholar
[2]
VeronisG, FanS. Optics Letters, 2005, 30: 3559
CrossRef Google scholar
[3]
VeronisG, FanS. Journal of Lightwave Technology, 2007, 25: 2511
CrossRef Google scholar
[4]
KrasavinA V, ZayatsA V. Optics Express, 2010, 18: 11791
CrossRef Google scholar
[5]
AlamM Z, AitchisonJ S, MojahediM. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19: 4602008
CrossRef Google scholar
[6]
AlamM Z, AitchisonJ S, MojahediM. Laser Photonics Reviews, 2014, 8: 394
CrossRef Google scholar
[7]
NoghaniM T, MohammadH, SamieiV. Plasmonics, 2013, 8: 1155
CrossRef Google scholar
[8]
SharmaP, KumarD V. IEEE Photonics Technology Lettters, 2017, 29: 1360
CrossRef Google scholar
[9]
BianY, GongQ. Optics Communications, 2013, 308: 30
CrossRef Google scholar
[10]
SharmaP, KumarD V. Electronics Letters, 2016, 52: 732
CrossRef Google scholar
[11]
TianJ, YangR, SongL, XueW. IEEE Journal of Quantum Electronics, 2014, 50: 898
CrossRef Google scholar
[12]
HolmgaardT, BozhevolnyiS I. Physical Review, 2007, 75: 245405
CrossRef Google scholar
[13]
ChuH-S, LiE-P, BaiP, HegdeR. Applied Physics Letters, 2010, 96: 221103
CrossRef Google scholar
[14]
GrandidierJ, MassenotS, FrancsG C, BouhelierA, WeeberJ C, MarkeyL, DereuxA. Physical Review, 2008, 78: 245419
CrossRef Google scholar
[15]
DaiD, HeS. Optics Express, 2009, 19: 16646
CrossRef Google scholar
[16]
NikoufardM, AlamoutiM K, PourgholiS. IEEE Transaction on Nanotechnology, 2017, 16: 477
CrossRef Google scholar
[17]
LacavaC, PusinoV, MinzioniP, SorelM, CristianiI. Optics Express, 2014, 22: 5291
CrossRef Google scholar
[18]
Urcan Guler, Alexander V. Kildishev, Alexandra Boltassevaab and Vladimir M. Shalaev, Royal Soceity of Chemistry, 2015.
[19]
Hong-Son Chu, Ping Bai and Er-Ping Li, IEEE MTT-S International Microwave Symposium, Baltimore 1 (2011), USA.
[20]
SunX, AlamM Z, MojahediM, AitchisonJ S. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 4600308
[21]
AlmeidaV R, XuQ, BarriosC A, LipsonM. Optics Letters, 2004, 29: 1209
CrossRef Google scholar
[22]
DaiD, HeS. Optics Express, 2010, 18: 17958
CrossRef Google scholar
[23]
HardyA, StreiferW. Journal of Lightwave Technology, 1985, 3: 1135
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/