Optical performance of hybrid dielectric loaded plasmonic waveguide using PTFE for nano-scale light confinement

Pintu Kumar , Dharmendra Kumar Singh , Rakesh Ranjan

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 284 -289.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 284 -289. DOI: 10.1007/s11801-020-9119-9
Article

Optical performance of hybrid dielectric loaded plasmonic waveguide using PTFE for nano-scale light confinement

Author information +
History +
PDF

Abstract

Different characteristics of fundamental mode of hybrid dielectric loaded plasmonic waveguide have been explored at 1 550 nm wavelength, to resolve the issue of large propagation loss and diffraction limit with minimal waveguide dimension. Propagation length of 432 um has been achieved with the optimal dimension of 200 nm×40 nm. Through the numerical simulation results, the effective area of 0.021 urn2 and normalized intensity of 40.71 µ−2 in the spacer region of the waveguide have been realized. To accomplish the ultra-compact directional coupler, the smaller coupling length of about 1.42 µm has been achieved. PTFE-based waveguide can be highly beneficial for the realization of monolithic integration with active optical devices.

Cite this article

Download citation ▾
Pintu Kumar, Dharmendra Kumar Singh, Rakesh Ranjan. Optical performance of hybrid dielectric loaded plasmonic waveguide using PTFE for nano-scale light confinement. Optoelectronics Letters, 2020, 16(4): 284-289 DOI:10.1007/s11801-020-9119-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangR, LuZ. International Journal of Optics, 2012, 2012: 258013

[2]

VeronisG, FanS. Optics Letters, 2005, 30: 3559

[3]

VeronisG, FanS. Journal of Lightwave Technology, 2007, 25: 2511

[4]

KrasavinA V, ZayatsA V. Optics Express, 2010, 18: 11791

[5]

AlamM Z, AitchisonJ S, MojahediM. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19: 4602008

[6]

AlamM Z, AitchisonJ S, MojahediM. Laser Photonics Reviews, 2014, 8: 394

[7]

NoghaniM T, MohammadH, SamieiV. Plasmonics, 2013, 8: 1155

[8]

SharmaP, KumarD V. IEEE Photonics Technology Lettters, 2017, 29: 1360

[9]

BianY, GongQ. Optics Communications, 2013, 308: 30

[10]

SharmaP, KumarD V. Electronics Letters, 2016, 52: 732

[11]

TianJ, YangR, SongL, XueW. IEEE Journal of Quantum Electronics, 2014, 50: 898

[12]

HolmgaardT, BozhevolnyiS I. Physical Review, 2007, 75: 245405

[13]

ChuH-S, LiE-P, BaiP, HegdeR. Applied Physics Letters, 2010, 96: 221103

[14]

GrandidierJ, MassenotS, FrancsG C, BouhelierA, WeeberJ C, MarkeyL, DereuxA. Physical Review, 2008, 78: 245419

[15]

DaiD, HeS. Optics Express, 2009, 19: 16646

[16]

NikoufardM, AlamoutiM K, PourgholiS. IEEE Transaction on Nanotechnology, 2017, 16: 477

[17]

LacavaC, PusinoV, MinzioniP, SorelM, CristianiI. Optics Express, 2014, 22: 5291

[18]

Urcan Guler, Alexander V. Kildishev, Alexandra Boltassevaab and Vladimir M. Shalaev, Royal Soceity of Chemistry, 2015.

[19]

Hong-Son Chu, Ping Bai and Er-Ping Li, IEEE MTT-S International Microwave Symposium, Baltimore 1 (2011), USA.

[20]

SunX, AlamM Z, MojahediM, AitchisonJ S. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 4600308

[21]

AlmeidaV R, XuQ, BarriosC A, LipsonM. Optics Letters, 2004, 29: 1209

[22]

DaiD, HeS. Optics Express, 2010, 18: 17958

[23]

HardyA, StreiferW. Journal of Lightwave Technology, 1985, 3: 1135

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/