Spectral characteristics of microfiber nested ring with knot resonator

Guo Shi-liang, Li Xin, Xue Han

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 185-189.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 185-189. DOI: 10.1007/s11801-020-9110-5
Article

Spectral characteristics of microfiber nested ring with knot resonator

Author information +
History +

Abstract

A novel microfiber nested ring with knot resonator (MNRKR) is proposed and demonstrated. A mathematical model to describe the principle of the tunable feature of MNRKR is illustrated. The improvement of the output spectra is achieved by changing the transmission coefficient and the length of the feedback waveguide. We theoretically and experimentally demonstrate that the free spectral range (FSR) can be doubled by constructive interference without reducing the circumference of microring. Thus, this all-fiber optical device has the potential for achieving a large measuring range of the optical sensor.

Cite this article

Download citation ▾
Guo Shi-liang, Li Xin, Xue Han. Spectral characteristics of microfiber nested ring with knot resonator. Optoelectronics Letters, 2020, 16(3): 185‒189 https://doi.org/10.1007/s11801-020-9110-5

References

[1]
Shao-chengY, YeC, CaiL, FeiX, Yan-qingL. Optics Express, 2015, 23: 9407
CrossRef Google scholar
[2]
Yan-zhenT, Li-pengS, LongJ, JieL, Bai-ouG. Optics Express, 2013, 21: 154
CrossRef Google scholar
[3]
TalataisongW, IsmaeelR, BrambillaG. Sensors, 2018, 18: 461
CrossRef Google scholar
[4]
TaoW, Xiao-huiL, Fang-feiL, Wei-hongL, Zi-yangZ, Li-minT, Yi-kaiS. Optics Express, 2010, 18: 16156
CrossRef Google scholar
[5]
Jin-hongL, Jin-huiC, Shao-chengY, Ya-pingR, FeiX, Yan-qingL. Optics Letters, 2017, 42: 3395
CrossRef Google scholar
[6]
XinZ, Zhi-quanL, Yu-chaoS, KaiT. Optoelectronics Letters, 2013, 9: 333
CrossRef Google scholar
[7]
XinL, Shi-liangG, Zhi-quanL, MingY. Optoelectronics Letters, 2014, 10: 188
CrossRef Google scholar
[8]
NiehusmannJ, VörckelA, BolivarP H, WahlbrinkT, HenschelW, KurzH. Optics Letters, 2004, 29: 2861
CrossRef Google scholar
[9]
Qian-fanX, FattalD, BeausoleilR G. Optics Express, 2008, 16: 4309
CrossRef Google scholar
[10]
BoeckR, JaegerN A, RougerN, ChrostowskiL. Optics Express, 2010, 18: 25151
CrossRef Google scholar
[11]
Kai-yangW, Chang-qiuY, Xue-nanZ, ChiX, Yun-dongZ, PingY. Applied Optics, 2015, 54: 1285
CrossRef Google scholar
[12]
Hong-liangR, Chang-lingZ, JinL, Zi-chunL, Ya-liQ, Shu-qinG, Wei-shengH. JOSA B, 2019, 36: 942
CrossRef Google scholar
[13]
Ya-tingY, Ji-boY, Yu-xuanJ, LewisE, BrambillaG, Peng-feiW. Optics Letters, 2019, 44: 1864
CrossRef Google scholar
[14]
DarmawanS, LandobasaY M, ChinM K. Optics Express, 2007, 15: 437
CrossRef Google scholar
[15]
YarivA. Electronics Letters, 2000, 36: 321
CrossRef Google scholar
[16]
BrambillaG, FeiX, XiangF. Electronics Letters, 2006, 42: 517
CrossRef Google scholar
[17]
Zheng-tongW. Doctor thesis in University of National University of Defense Technology, 2013,
[18]
Xiao-shunJ, Li-minT, VienneG, XinG, TsaoA, QingY, YangD. Applied Physics Letters, 2006, 88: 223501
CrossRef Google scholar
[19]
YuW, Yun-JiangR, Yi-huaiC, YuanG. Optics Express, 2009, 17: 18142
CrossRef Google scholar
[20]
PalS S, MondalS K, TiwariU, SwamyP V G, KumarM, SinghN, BajpaiP P, KapurP. Review of Scientific Instruments, 2011, 82: 095107
CrossRef Google scholar
[21]
LimK S, AryanfarI, ChongW Y, CheongY K, HarunS W, AhmadH. Sensors, 2012, 12: 11782
CrossRef Google scholar
[22]
LimK S, HarunS W, DamanhuriS S A, JasimA A, TioC K, AhmadH. Sensors and Actuators A: Physical, 2011, 167: 60
CrossRef Google scholar
[23]
Xiao-shunJ, YuanC, VienneG, Li-minT. Optics Letters, 2007, 32: 1710
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/