Size effect of semiconductor quantum wells in excitonic spin generation under drift

M. Idrish Miah

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 318 -320.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 318 -320. DOI: 10.1007/s11801-020-9108-z
Article

Size effect of semiconductor quantum wells in excitonic spin generation under drift

Author information +
History +
PDF

Abstract

The excitonic spin polarization in dependence of the size of semiconductor quantum well (QW) was investigated by observing the two different circular polarizations of photoluminescence (PL). From the measurements of PL in QWs, it was found that there is a difference between the two different polarization conditions, which is caused by spin-dependent phase-space filling. The PL spin polarization was estimated from the signals of the left and right circularly polarized PL and was found to depend on the size of the wells as well as on the strength of the bias field. The effects of the size of the well and applied electric field on the excitonic PL spin polarization were studied.

Cite this article

Download citation ▾
M. Idrish Miah. Size effect of semiconductor quantum wells in excitonic spin generation under drift. Optoelectronics Letters, 2020, 16(4): 318-320 DOI:10.1007/s11801-020-9108-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. I. Dyakonov and A. V. Khaetskii, Spin Hall Effect, Spin Physics in Semiconductors, M. I. Dyakonov, ed., Springer-Verlag, Berlin, 2008.

[2]

ZieseM, ThorntonM J. Spin Electronics, 2001, Heidelberg, Springer-Verlag

[3]

AwschalomDD, LossD, SamarthN. Semiconductor Spintronics and Quantum Computation, 2002, Berlin, Springer

[4]

MiahM I, OptoelectronJ. Adv. Mater., 2008, 10: 2487

[5]

van KesterenH W, CosmanE C, van der PoelW A J A, FoxonC T. Phys. Rev. B, 1990, 41: 5283

[6]

KikkawaJ M, AwschalomDD. Phys. Rev. Lett., 1998, 80: 4313

[7]

WolfS A, AwschalomDD, BuhrmanRA, DaughtonJM, von MolnárS, RoukesML, ChtchelkanovaAY, TregerDM. Science, 2001, 294: 1488

[8]

DzhioevR I, KorenevV L, ZakharchenyaB P, GammonD, BrackerA S, TischlerJ G, KatzerD S. Phys. Rev. B, 2002, 66: 153409

[9]

LouX, AdelmannC, CrookerC A, GarlidE S, ZhangJ, ReddyK S M, FlexnerS D, PalmstremC J, CrowellP A. Nat. Phys., 2007, 3: 197

[10]

SeymourR J, AlfanoR R. Appl. Phys. Lett., 1980, 37: 231

[11]

WagnerJ, SchneiderH, RichardsD, FischerA, PloogK. Phys. Rev. B, 1993, 47: 4786

[12]

EndoT, SueokaK, MukasaK. Jpn. J Appl. Phys., 2000, 39: 397

[13]

GotohH, AndoH, KamadaH, Chavez-PirsonA, TemmyoJ. Appl. Phys. Lett., 1998, 72: 1341

[14]

CortezS, KrebsO, LaurentS, SenesM, MarieX, VoisinP, FerreiraR, BastardG, GérardJ- M, AmandT. Phys. Rev. Lett., 2002, 89: 207401

[15]

DashS P, SharmaS, PatelR S, de JongM P, JansenR. Nature, 2009, 462: 491

[16]

FengF, NguyenL T, NasilowskiM, NadalB, DubertrelB, CoolenL, MaitreA. Nano Research, 2018, 11: 3593

[17]

FengF, NguyenL T, NasilowskiM, NadalB, DubertrelB, MaitreA, CoolenL. ACS Photonics, 2018, 5: 1994

[18]

G. E. Pikus and A. N. Titkov, in Optical Orientation, Modern Problems in Condensed Matter Science (F. Meier and B. P. Zakharchenya, Eds.), North-Holland, Amsterdam, 1984.

[19]

MiahM I. Appl. Phys. Lett., 2009, 94: 182106

[20]

LampelG, WeisbuchC. Solid State Comm., 1975, 16: 877

[21]

AvrutskyI A, VosmishevA V. Phys. Low-Dim. Struct, 1995, 10/11: 257

[22]

WangT, LiA, TanZ. Proc. SPIE, 2007, 6838: 683814

[23]

MiahM I. Appl. Phys. Lett., 2009, 94: 182106

[24]

MiahM I, KasperczykJ. Appl. Phys. Lett., 2009, 94: 053117

[25]

HeberleA P, RuhleW W, PloogK. Phys. Lett., 1994, 72: 3887

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/