A new approach to regulate the photoelectric properties of two-dimensional SiC materials: first-principles calculation on B-N co-doping

Chun-hong Zhang , Zhong-zheng Zhang , Wan-jun Yan

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 205 -210.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 205 -210. DOI: 10.1007/s11801-020-9096-z
Article

A new approach to regulate the photoelectric properties of two-dimensional SiC materials: first-principles calculation on B-N co-doping

Author information +
History +
PDF

Abstract

This paper describes a new approach to regulate the photoelectric properties of two-dimensional SiC materials. The first-principles pseudo-potential plane wave method is used to calculate the geometric structure, electronic structure and optical properties of two-dimensional (2D) SiC co-doped by the adjacent elements of C-Si (such as B and N). The results show that: after B-N co-doping, the supercell lattices of 2D SiC are observed obviously deformation near the doped atoms. Meanwhile, the band structures of 2D SiC co-doped by B-N become rich. As the impurity level enters the forbidden band, the band gap decreases, and the distribution of density of states near the Fermi level changes accordingly. The calculation of optical properties shows that the ability to absorb electromagnetic waves of 2D SiC has been enhanced obviously in the low energy range after B-N co-doping. The reason is originated from the transition of the 2p state of B and N. At the same time, the static dielectric constant increases and the peak of reflectivity decreases. The above results indicate that the optoelectronic properties of 2D SiC can be modulated by co-doping B-N.

Cite this article

Download citation ▾
Chun-hong Zhang, Zhong-zheng Zhang, Wan-jun Yan. A new approach to regulate the photoelectric properties of two-dimensional SiC materials: first-principles calculation on B-N co-doping. Optoelectronics Letters, 2020, 16(3): 205-210 DOI:10.1007/s11801-020-9096-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HarrisG L. Properties of Silicon Carbide, 1995,

[2]

IvanovP A, ChelnokovV E. Semiconductor Science & Technology, 1999, 7: 863

[3]

LinX, LinS S, XuY, HakroA A, HasanT, ZhangB L, YuB, LuoJ K, LiE P, ChenH S. Journal of Materials Chemistry C, 2013, 1: 2131

[4]

WangD Y, SongY C, LiY Q. Transactions of Nonferrous Metals Society of China, 2012, 22: 1133

[5]

ZhouL J, ZhangY F, WuL M. Nano Letters, 2013, 13: 5431

[6]

DingY, WangY. Journal of Physical Chemistry C, 2014, 118: 4509

[7]

ShiZ M, ZhangZ H, KutanaA, YakobsonB I. ACS Nano, 2015, 9: 9802

[8]

AzriM A, ElzainM, KhalidB, CherifS M. European Physical Journal B, 2013, 86: 1

[9]

LinL, LiX H, XuY H, ZhangZ H, TaoH L, HeM, ZhangZ Y, CaoJ L. Journal of Superconductivity & Novel Magnetism, 2018, 31: 225

[10]

SongB, BaoH Q, LiH, LeiM, PengT H, JianJ K, LiuJ, WangW J, WangW J, ChenX L. Journal of the American Chemical Society, 2009, 131: 1376

[11]

LiuN, WangW J, GuoL W, PengT H, ChenX L. Modern Physics Letters B, 2017, 31: 1750116

[12]

JavanM B. Journal of Magnetism & Magnetic Materials, 2016, 401: 656

[13]

ParkJ, KimK H, ParkY R, KimM K, LeeH, JunC H, KooS M, KoS C. Applied Physics Letters, 2016, 109: 031603

[14]

BurtonJ C, SunL, PophristicM, LukacS J, LongF H. Journal of Applied Physics, 1998, 84: 6268

[15]

SongB, BaoH Q, LiH, LeiM, JianJ K, HanJ C, ZhangX H, MengS H, ChenX L. Applied Physics Letters, 2009, 94: 1019

[16]

WeingartnerR, WellmannP J, BickermannM, HofmannD, StraubingerT L, WinnackerA. Applied Physics Letters, 2002, 80: 70

[17]

PeartonS J, ParkY D, AbernathyC R, OverbergM E, ThalerG T, KimJ, RenF, ZavadaJ M, WilsonR G F. Thin Solid Films, 2004, 447: 493

[18]

PankninD, WirthH, MucklichA, SkorupaW. Journal of Applied Physics, 2001, 89: 3162

[19]

Duijn-ArnoldA V, IkomaT, PoluektovO G, BaranovP G, SchmidtJ. Physical Review B, 1998, 57: 1607

[20]

LinL, ZhangZ H, TaoH L, HeM, HuangG L, SongB. Computational Materials Science, 2014, 87: 72

[21]

LinL, ZhuL H, ZhaoR Q, HuangJ T, TaoH L, XuY H, ZhangZ Y. New Journal of Chemistry, 2018, 42: 9393

[22]

DrissiL B, YahyaouiF E. Bulletin of Materials Science, 2017, 40: 1081

[23]

WangW Y, XuJ G, ZhangY G, LiG X. Micron- anoelectronic Technology, 2018, 55: 98

[24]

LiY J, LiS L, GongP, LiY L, CaoM S, FangX Y. Physica E: Low-dimensional Systems and Nanostructures, 2018, 98: 191

[25]

JavanM B, OrimiR L. Journal of Computational & Theoretical Nanoscience, 2015, 12: 1023

[26]

ZhuoS Y, LiuX, GaoP, YanC F, ShiE W. Journal of Inorganic Materials, 2017, 32: 51

[27]

JavanM B. Journal of Molecular Modeling, 2013, 19: 3603

[28]

SuX L, ZhouW C, XuJ, WangJ B, HeX H, FuC, LiZ M, KleebeH. Journal of the American Ceramic Society, 2012, 95: 1388

[29]

ChoudharyS, QureshiS. Physics Letters Section A General Atomic & Solid State Physics, 2013, 377: 430

[30]

ZhouP L, ShiR Q, HeJ F, ZhengS K. Acta Physica Sinica, 2013, 62: 233101

[31]

SunX K, JinX, LiM, GuoR S, AnY K, LiuJ W. Superlattices & Microstructures, 2014, 65: 278

[32]

ZhouP L, ZhengS K, TianY, ZhangS M, ShiR Q, HeJ F, YanX B. Acta Physica Sinica, 2014, 63: 053102

[33]

SegallM D L, PhilipJ D, ProbertM J, PickardC J, HasnipP J, ClarkS J, PayneM C J. Phys: Condens Matter., 2002, 14: 2717

[34]

VanderbiltD. Phys Rev B., 1990, 41: 7892

[35]

PerdewJ P, BurkeK, ErnzerhofM. Generalized gradient approximation made simple, Phys Rev Lett., 1996, 77: 3865

[36]

YanW J, XieQ, QinX M, ZhangC H, ZhangZ Z, ZhouS Y. Computational Materials Science, 2017, 126: 336

[37]

HudaM N, YanY F, Al-JassimM M. Chemical Physics Letters, 2009, 479: 255

[38]

ZhouY G, YangP, WangZ G, XiaoH Y, ZuX T, SunX W, KhaleelM, GaoF. Applied Physics Letters, 2011, 98: 093108

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/