A new approach to regulate the photoelectric properties of two-dimensional SiC materials: first-principles calculation on B-N co-doping

Chun-hong Zhang, Zhong-zheng Zhang, Wan-jun Yan

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 205-210.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 205-210. DOI: 10.1007/s11801-020-9096-z
Article

A new approach to regulate the photoelectric properties of two-dimensional SiC materials: first-principles calculation on B-N co-doping

Author information +
History +

Abstract

This paper describes a new approach to regulate the photoelectric properties of two-dimensional SiC materials. The first-principles pseudo-potential plane wave method is used to calculate the geometric structure, electronic structure and optical properties of two-dimensional (2D) SiC co-doped by the adjacent elements of C-Si (such as B and N). The results show that: after B-N co-doping, the supercell lattices of 2D SiC are observed obviously deformation near the doped atoms. Meanwhile, the band structures of 2D SiC co-doped by B-N become rich. As the impurity level enters the forbidden band, the band gap decreases, and the distribution of density of states near the Fermi level changes accordingly. The calculation of optical properties shows that the ability to absorb electromagnetic waves of 2D SiC has been enhanced obviously in the low energy range after B-N co-doping. The reason is originated from the transition of the 2p state of B and N. At the same time, the static dielectric constant increases and the peak of reflectivity decreases. The above results indicate that the optoelectronic properties of 2D SiC can be modulated by co-doping B-N.

Cite this article

Download citation ▾
Chun-hong Zhang, Zhong-zheng Zhang, Wan-jun Yan. A new approach to regulate the photoelectric properties of two-dimensional SiC materials: first-principles calculation on B-N co-doping. Optoelectronics Letters, 2020, 16(3): 205‒210 https://doi.org/10.1007/s11801-020-9096-z

References

[1]
HarrisG L. Properties of Silicon Carbide, 1995,
[2]
IvanovP A, ChelnokovV E. Semiconductor Science & Technology, 1999, 7: 863
CrossRef Google scholar
[3]
LinX, LinS S, XuY, HakroA A, HasanT, ZhangB L, YuB, LuoJ K, LiE P, ChenH S. Journal of Materials Chemistry C, 2013, 1: 2131
CrossRef Google scholar
[4]
WangD Y, SongY C, LiY Q. Transactions of Nonferrous Metals Society of China, 2012, 22: 1133
CrossRef Google scholar
[5]
ZhouL J, ZhangY F, WuL M. Nano Letters, 2013, 13: 5431
CrossRef Google scholar
[6]
DingY, WangY. Journal of Physical Chemistry C, 2014, 118: 4509
CrossRef Google scholar
[7]
ShiZ M, ZhangZ H, KutanaA, YakobsonB I. ACS Nano, 2015, 9: 9802
CrossRef Google scholar
[8]
AzriM A, ElzainM, KhalidB, CherifS M. European Physical Journal B, 2013, 86: 1
CrossRef Google scholar
[9]
LinL, LiX H, XuY H, ZhangZ H, TaoH L, HeM, ZhangZ Y, CaoJ L. Journal of Superconductivity & Novel Magnetism, 2018, 31: 225
CrossRef Google scholar
[10]
SongB, BaoH Q, LiH, LeiM, PengT H, JianJ K, LiuJ, WangW J, WangW J, ChenX L. Journal of the American Chemical Society, 2009, 131: 1376
CrossRef Google scholar
[11]
LiuN, WangW J, GuoL W, PengT H, ChenX L. Modern Physics Letters B, 2017, 31: 1750116
CrossRef Google scholar
[12]
JavanM B. Journal of Magnetism & Magnetic Materials, 2016, 401: 656
CrossRef Google scholar
[13]
ParkJ, KimK H, ParkY R, KimM K, LeeH, JunC H, KooS M, KoS C. Applied Physics Letters, 2016, 109: 031603
CrossRef Google scholar
[14]
BurtonJ C, SunL, PophristicM, LukacS J, LongF H. Journal of Applied Physics, 1998, 84: 6268
CrossRef Google scholar
[15]
SongB, BaoH Q, LiH, LeiM, JianJ K, HanJ C, ZhangX H, MengS H, ChenX L. Applied Physics Letters, 2009, 94: 1019
[16]
WeingartnerR, WellmannP J, BickermannM, HofmannD, StraubingerT L, WinnackerA. Applied Physics Letters, 2002, 80: 70
CrossRef Google scholar
[17]
PeartonS J, ParkY D, AbernathyC R, OverbergM E, ThalerG T, KimJ, RenF, ZavadaJ M, WilsonR G F. Thin Solid Films, 2004, 447: 493
CrossRef Google scholar
[18]
PankninD, WirthH, MucklichA, SkorupaW. Journal of Applied Physics, 2001, 89: 3162
CrossRef Google scholar
[19]
Duijn-ArnoldA V, IkomaT, PoluektovO G, BaranovP G, SchmidtJ. Physical Review B, 1998, 57: 1607
CrossRef Google scholar
[20]
LinL, ZhangZ H, TaoH L, HeM, HuangG L, SongB. Computational Materials Science, 2014, 87: 72
CrossRef Google scholar
[21]
LinL, ZhuL H, ZhaoR Q, HuangJ T, TaoH L, XuY H, ZhangZ Y. New Journal of Chemistry, 2018, 42: 9393
CrossRef Google scholar
[22]
DrissiL B, YahyaouiF E. Bulletin of Materials Science, 2017, 40: 1081
CrossRef Google scholar
[23]
WangW Y, XuJ G, ZhangY G, LiG X. Micron- anoelectronic Technology, 2018, 55: 98
[24]
LiY J, LiS L, GongP, LiY L, CaoM S, FangX Y. Physica E: Low-dimensional Systems and Nanostructures, 2018, 98: 191
CrossRef Google scholar
[25]
JavanM B, OrimiR L. Journal of Computational & Theoretical Nanoscience, 2015, 12: 1023
CrossRef Google scholar
[26]
ZhuoS Y, LiuX, GaoP, YanC F, ShiE W. Journal of Inorganic Materials, 2017, 32: 51
CrossRef Google scholar
[27]
JavanM B. Journal of Molecular Modeling, 2013, 19: 3603
CrossRef Google scholar
[28]
SuX L, ZhouW C, XuJ, WangJ B, HeX H, FuC, LiZ M, KleebeH. Journal of the American Ceramic Society, 2012, 95: 1388
CrossRef Google scholar
[29]
ChoudharyS, QureshiS. Physics Letters Section A General Atomic & Solid State Physics, 2013, 377: 430
[30]
ZhouP L, ShiR Q, HeJ F, ZhengS K. Acta Physica Sinica, 2013, 62: 233101
[31]
SunX K, JinX, LiM, GuoR S, AnY K, LiuJ W. Superlattices & Microstructures, 2014, 65: 278
CrossRef Google scholar
[32]
ZhouP L, ZhengS K, TianY, ZhangS M, ShiR Q, HeJ F, YanX B. Acta Physica Sinica, 2014, 63: 053102
[33]
SegallM D L, PhilipJ D, ProbertM J, PickardC J, HasnipP J, ClarkS J, PayneM C J. Phys: Condens Matter., 2002, 14: 2717
[34]
VanderbiltD. Phys Rev B., 1990, 41: 7892
CrossRef Google scholar
[35]
PerdewJ P, BurkeK, ErnzerhofM. Generalized gradient approximation made simple, Phys Rev Lett., 1996, 77: 3865
[36]
YanW J, XieQ, QinX M, ZhangC H, ZhangZ Z, ZhouS Y. Computational Materials Science, 2017, 126: 336
CrossRef Google scholar
[37]
HudaM N, YanY F, Al-JassimM M. Chemical Physics Letters, 2009, 479: 255
CrossRef Google scholar
[38]
ZhouY G, YangP, WangZ G, XiaoH Y, ZuX T, SunX W, KhaleelM, GaoF. Applied Physics Letters, 2011, 98: 093108
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/