Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells

Zhong-qiu Xing , Yong-jie Zhou , Xue Chen , Mussaab I. Niass , Yi-fu Wang , Fang Wang , Yu-huai Liu

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 87 -91.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 87 -91. DOI: 10.1007/s11801-020-9093-2
Article

Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells

Author information +
History +
PDF

Abstract

An AlGaN-based deep ultraviolet laser diode with convex quantum wells structure is proposed. The advantage of using a convex quantum wells structure is that the radiation recombination is significantly improved. The improvement is attributed to the increase of the effective barrier height for electrons and the reduction of the effective barrier height for holes, which results in an increased hole injection efficiency and a decreased electron leakage into the p-type region. Particularly, comparisons with the convex quantum barriers structure and the reference structure show that the convex quantum wells structure has the best performance in all respects.

Cite this article

Download citation ▾
Zhong-qiu Xing, Yong-jie Zhou, Xue Chen, Mussaab I. Niass, Yi-fu Wang, Fang Wang, Yu-huai Liu. Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells. Optoelectronics Letters, 2020, 16(2): 87-91 DOI:10.1007/s11801-020-9093-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WundererT, ChuaC, YangZ. Applied Physics Express, 2011, 4: 092101

[2]

XiangL, DegangZ, DeshengJ, PingC, ZongshunL, JianjunZ, MingS, DanmeiZ, WeiL. Journal of Semiconductors, 2016, 37: 73

[3]

ZhenZ, XinZ, PeixuL, GangW, XiangangX. Journal of Semiconductors, 2015, 36: 109

[4]

WeiG, ZacharyB, JinqiaoX, RonnyK, SeijiM, IsaacB, LindsayH, MilenaB, BrianH, MichaelG, RamónC, ZlatkoS. Journal of Applied Physics, 2014, 115: 103108

[5]

ChengC, YanL, ZhiqiangL, MiaoH, ZhiL, XiaoyanY, JunxiW, JinminL, DepingX. Journal of Semiconductors, 2018, 39: 51

[6]

PengW, LingZ, HaijuanY, XiandanY, ZhiyanZ, PengfeiZ, ShuzhenZ, ChaojianH, YaoyaoQ, YingyingY, GangL, XubaoW, XuechunL. Journal of Semiconductors, 2017, 38: 75

[7]

AlahyarizadehG, AmirhoseinyM, HassanZ. Optik-International Journal for Light and Electron Optics, 2016, 127: 4815

[8]

Mehta K, Liu Y S and Wang J, Theory and Design of Electron Blocking Layers for III-N Based Laser Diodes by Numerical Simulation, the 76th Device Research Conference (DRC), 1 (2018).

[9]

LijieL, YuandaW, YueW, JunmingA, XiongweiH. Optoelectronics Letters, 2018, 14: 342

[10]

YangJ, ZhaoD G, JiangD S, LiX, LiangF, ChenP, ZhuJ J, LiuZ S, LiuS T, ZhangL Q, LiM. Optics Express, 2017, 25: 9595

[11]

LongfeiH, WeiZ, KangZ, ChenguangH, HualongW, NingyangL, WeidongS, Zhi-taoC, ShutiL. Optics Letters, 2018, 43: 515

[12]

XuM-s, ZhangH, ZhouQ-b, WangH. Optoelectronics Letters, 2016, 12: 249

[13]

TanakaT, YanagisawaH, KawanakaS. Photonics Technology Letters IEEE, 1995, 7: 136

[14]

NodaS. Science, 2001, 293: 1123

[15]

YinC, ShenB, ZhangQ. Applied Physics Letters, 2010, 97: 181904

[16]

ZhangM, LiY, ChenS. Superlattices and Microstructures, 2014, 75: 63

[17]

BaumbergJ J, KavokinA V, ChristopoulosS. Physical Review Letters, 2008, 101: 136409

[18]

YangG, XieF, DongK, ChenP, XueJ, ZhiT, TaoT, LiuB, XieZ, XiuX, HanP, ShiY, ZhangR, ZhengY. Physica E: Low-dimensional Systems and Nanostructures, 2014, 62: 55

[19]

ZhaoH, TansuN. Journal of Applied Physics, 2010, 107: 22

[20]

LuH M, YuT J, ChenX J, WangJ P, ChenZ Z, ZhangG Y. Superlattices and Microstructures, 2016, 91: 112

[21]

Linyuan Wang, Guang Li, Weidong Song, H. Wang, Xingjun Luo, Yiming Sun, Bolin Zhang, Jian Jiang and Shuti Li, Superlattices and Microstructures, 608 (2018).

[22]

YenSH, KuoYK. J. Appl. Phys., 2008, 103: 103115

[23]

Sheng XiaC, Simon LiZM, LiZQ, ShengY. Appl. Phys. Lett., 2013, 102: 141101

[24]

TianW, FengZH, LiuB, XiongH, ZhangJB, DaiJN, CaiSJ, ChenCQ. Opt. Quant. Electron., 2013, 45: 381

[25]

KojimaK, NagasawaY, HiranoA, IppommatsuM, HondaY, AmanoH, AkasakiI, ChichibuS F. Appl. Phys. Lett., 2019, 114: 011102

[26]

LuH, DongK, ChenD, LiuB. Applied Physics Letters, 2012, 100: 2390

[27]

Wangy-f, MussaabI, Niassf, Wangf, Liuy-h. Chinese Physics Letters, 2019, 36: 67

[28]

GuijuZ, ChinhuaW, BingC, ZengliH, JianfengW, BaoshunZ, KX. Optics Express, 2010, 18: 7019

[29]

MussaabI N, JunweiZ, ZhengqianL, ZhongqiuD, XueC, YipuQ, FangW, YuhuaiL. Structure Optimization of 266 nm Al0.53GaN/Al0.75GaN SQW DUV-LD. Journal of Crystal Growth, 2018,

[30]

JafpritS. Semiconductor Optoelectronics: Physics and Technology, 1995,

[31]

ChenP Z, ZhaoD G, JiangD S, ZhuJ J, LiuZ S, LeL C, YangJ C, LiX P, ZhangL Q, LiuJ P, ZhangS M, YangH M. Physica Status Solidi (a), 2015, 212: 2936

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/