Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells

Zhong-qiu Xing, Yong-jie Zhou, Xue Chen, Mussaab I. Niass, Yi-fu Wang, Fang Wang, Yu-huai Liu

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 87-91.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 87-91. DOI: 10.1007/s11801-020-9093-2
Article

Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells

Author information +
History +

Abstract

An AlGaN-based deep ultraviolet laser diode with convex quantum wells structure is proposed. The advantage of using a convex quantum wells structure is that the radiation recombination is significantly improved. The improvement is attributed to the increase of the effective barrier height for electrons and the reduction of the effective barrier height for holes, which results in an increased hole injection efficiency and a decreased electron leakage into the p-type region. Particularly, comparisons with the convex quantum barriers structure and the reference structure show that the convex quantum wells structure has the best performance in all respects.

Cite this article

Download citation ▾
Zhong-qiu Xing, Yong-jie Zhou, Xue Chen, Mussaab I. Niass, Yi-fu Wang, Fang Wang, Yu-huai Liu. Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells. Optoelectronics Letters, 2020, 16(2): 87‒91 https://doi.org/10.1007/s11801-020-9093-2

References

[1]
WundererT, ChuaC, YangZ. Applied Physics Express, 2011, 4: 092101
CrossRef Google scholar
[2]
XiangL, DegangZ, DeshengJ, PingC, ZongshunL, JianjunZ, MingS, DanmeiZ, WeiL. Journal of Semiconductors, 2016, 37: 73
[3]
ZhenZ, XinZ, PeixuL, GangW, XiangangX. Journal of Semiconductors, 2015, 36: 109
[4]
WeiG, ZacharyB, JinqiaoX, RonnyK, SeijiM, IsaacB, LindsayH, MilenaB, BrianH, MichaelG, RamónC, ZlatkoS. Journal of Applied Physics, 2014, 115: 103108
CrossRef Google scholar
[5]
ChengC, YanL, ZhiqiangL, MiaoH, ZhiL, XiaoyanY, JunxiW, JinminL, DepingX. Journal of Semiconductors, 2018, 39: 51
[6]
PengW, LingZ, HaijuanY, XiandanY, ZhiyanZ, PengfeiZ, ShuzhenZ, ChaojianH, YaoyaoQ, YingyingY, GangL, XubaoW, XuechunL. Journal of Semiconductors, 2017, 38: 75
CrossRef Google scholar
[7]
AlahyarizadehG, AmirhoseinyM, HassanZ. Optik-International Journal for Light and Electron Optics, 2016, 127: 4815
CrossRef Google scholar
[8]
Mehta K, Liu Y S and Wang J, Theory and Design of Electron Blocking Layers for III-N Based Laser Diodes by Numerical Simulation, the 76th Device Research Conference (DRC), 1 (2018).
[9]
LijieL, YuandaW, YueW, JunmingA, XiongweiH. Optoelectronics Letters, 2018, 14: 342
CrossRef Google scholar
[10]
YangJ, ZhaoD G, JiangD S, LiX, LiangF, ChenP, ZhuJ J, LiuZ S, LiuS T, ZhangL Q, LiM. Optics Express, 2017, 25: 9595
CrossRef Google scholar
[11]
LongfeiH, WeiZ, KangZ, ChenguangH, HualongW, NingyangL, WeidongS, Zhi-taoC, ShutiL. Optics Letters, 2018, 43: 515
CrossRef Google scholar
[12]
XuM-s, ZhangH, ZhouQ-b, WangH. Optoelectronics Letters, 2016, 12: 249
CrossRef Google scholar
[13]
TanakaT, YanagisawaH, KawanakaS. Photonics Technology Letters IEEE, 1995, 7: 136
CrossRef Google scholar
[14]
NodaS. Science, 2001, 293: 1123
CrossRef Google scholar
[15]
YinC, ShenB, ZhangQ. Applied Physics Letters, 2010, 97: 181904
CrossRef Google scholar
[16]
ZhangM, LiY, ChenS. Superlattices and Microstructures, 2014, 75: 63
CrossRef Google scholar
[17]
BaumbergJ J, KavokinA V, ChristopoulosS. Physical Review Letters, 2008, 101: 136409
CrossRef Google scholar
[18]
YangG, XieF, DongK, ChenP, XueJ, ZhiT, TaoT, LiuB, XieZ, XiuX, HanP, ShiY, ZhangR, ZhengY. Physica E: Low-dimensional Systems and Nanostructures, 2014, 62: 55
CrossRef Google scholar
[19]
ZhaoH, TansuN. Journal of Applied Physics, 2010, 107: 22
[20]
LuH M, YuT J, ChenX J, WangJ P, ChenZ Z, ZhangG Y. Superlattices and Microstructures, 2016, 91: 112
CrossRef Google scholar
[21]
Linyuan Wang, Guang Li, Weidong Song, H. Wang, Xingjun Luo, Yiming Sun, Bolin Zhang, Jian Jiang and Shuti Li, Superlattices and Microstructures, 608 (2018).
[22]
YenSH, KuoYK. J. Appl. Phys., 2008, 103: 103115
CrossRef Google scholar
[23]
Sheng XiaC, Simon LiZM, LiZQ, ShengY. Appl. Phys. Lett., 2013, 102: 141101
CrossRef Google scholar
[24]
TianW, FengZH, LiuB, XiongH, ZhangJB, DaiJN, CaiSJ, ChenCQ. Opt. Quant. Electron., 2013, 45: 381
CrossRef Google scholar
[25]
KojimaK, NagasawaY, HiranoA, IppommatsuM, HondaY, AmanoH, AkasakiI, ChichibuS F. Appl. Phys. Lett., 2019, 114: 011102
CrossRef Google scholar
[26]
LuH, DongK, ChenD, LiuB. Applied Physics Letters, 2012, 100: 2390
[27]
Wangy-f, MussaabI, Niassf, Wangf, Liuy-h. Chinese Physics Letters, 2019, 36: 67
[28]
GuijuZ, ChinhuaW, BingC, ZengliH, JianfengW, BaoshunZ, KX. Optics Express, 2010, 18: 7019
CrossRef Google scholar
[29]
MussaabI N, JunweiZ, ZhengqianL, ZhongqiuD, XueC, YipuQ, FangW, YuhuaiL. Structure Optimization of 266 nm Al0.53GaN/Al0.75GaN SQW DUV-LD. Journal of Crystal Growth, 2018,
[30]
JafpritS. Semiconductor Optoelectronics: Physics and Technology, 1995,
[31]
ChenP Z, ZhaoD G, JiangD S, ZhuJ J, LiuZ S, LeL C, YangJ C, LiX P, ZhangL Q, LiuJ P, ZhangS M, YangH M. Physica Status Solidi (a), 2015, 212: 2936
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/