Optical arbitrary waveform generation based on an array of tunable apodized waveguide Bragg gratings

Ai-ling Zhang , Qi-hang Cheng , Hong-yun Song , Hong-gang Pan

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 195 -199.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 195 -199. DOI: 10.1007/s11801-020-9083-4
Article

Optical arbitrary waveform generation based on an array of tunable apodized waveguide Bragg gratings

Author information +
History +
PDF

Abstract

A structure of optical arbitrary waveform generation (OAWG) based on an array of tunable apodized waveguide Bragg gratings (WBGs) is proposed. The WBGs array on lithium niobate (LN) consists of several apodized gratings, waveguides and electrodes deposited on both sides of gratings and waveguides. The properties of OAWG are analyzed using transfer matrix method. Due to the electro-optic effect of LN, the amplitude and phase of incident light source are controlled via adjusting the voltages on electrodes. Consequently, the optical pulses with different waveforms are obtained and the amplitude is linearly tuned. In addition, voltages compensating amplitude and phase distortion are demonstrated.

Cite this article

Download citation ▾
Ai-ling Zhang, Qi-hang Cheng, Hong-yun Song, Hong-gang Pan. Optical arbitrary waveform generation based on an array of tunable apodized waveguide Bragg gratings. Optoelectronics Letters, 2020, 16(3): 195-199 DOI:10.1007/s11801-020-9083-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GuanB, FontaineN K, RyfR. Journal of Lightwave Technology, 2016, 34: 737

[2]

ProiettiR, QinC, GuanB, FontaineN K. Journal of Optical Communications and Networking, 2016, 8: A171

[3]

ParkY, AsghariMH, HelstenR. IEEE Photonics Journal, 2010, 2: 1040

[4]

AmirR, YihanL, AndrewM W. IEEE Journal of Quantum Electronics, 2015, 52: 1

[5]

CundiffS T, WeinerA M. Nature Photonics, 2010, 4: 760

[6]

MittelbergerD E, MuirR D, HamamotoM Y, PrantilM A, HeebnerJ E. Optics Letters, 2019, 44: 2863

[7]

YutongH, YangJ, YuejiaoZ. Optics Express, 2018, 26: 7829

[8]

AilingZ, ChangxiuL. Optics Express, 2012, 20: 23074

[9]

AilingZ, ChangxiuL. Optics & Laser Technology, 2013, 52: 81

[10]

MengchaoY, AilingZ. Chinese Journal of Lasers, 2014, 41: 0105003

[11]

PeiliL, XiaoluM, WeihuaS, EnmingX. Optics and Laser Technology, 2017, 94: 228

[12]

CruzJ L, DiezA, AndresM A. Electronics Letters, 2010, 33: 1123

[13]

YunB, HuG, ZhangR, CuiY. Optics Communication, 2015, 336: 30

[14]

ArizmendiL. Physica Status Solidi, 2004, 201: 253

[15]

FengS, QinC, ShangK, PathakS, Ben YooSJ. Optics Express, 2017, 25: 8872

[16]

KeithV, SeanM, DanielN. Scientific Reports, 2017, 7: 44327

[17]

KipD, HukriedeJ, RundeD. Infrared Holography for Optical Communications, 2002, 86: 113

[18]

GhoumidK, FerriereR, BenkelfatB-E. Journal of Lightwave Technology, 2010, 28: 3488

[19]

ErdoganT. Journal of Lightwave Technology, 1997, 15: 1277

[20]

ArizmendiL. Physica Status Solidi, 2004, 201: 253

[21]

ZelmonD E, SmallD L, JundtD. Optical Society of America, 1997, 14: 3319

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/