120 GHz on-chip multi-mode wideband dielectric resonator antennas for THz applications

Yun-long Teng

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 166 -170.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (3) : 166 -170. DOI: 10.1007/s11801-020-9081-6
Article

120 GHz on-chip multi-mode wideband dielectric resonator antennas for THz applications

Author information +
History +
PDF

Abstract

This work discusses the design methods of 120 GHz on-chip dual-mode and three-mode dielectric resonator antennas (DRAs) based on a standard CMOS technology. The bandwidths of the DRAs are expanded by merging adjacent modes with similar radiation patterns. The impedance bandwidth of 18.6% with the peak gain of 6 dBi is achieved for the proposed on-chip dual-mode DRA. In addition, the impedance bandwidth of 20.1% with the peak gain of 6.9 dBi is achieved for the proposed three-mode DRA. To the best of authors’ knowledge, the on-chip multi-mode DRAs are first proposed. The impedance bandwidth of the proposed three-mode on-chip DRA is wider than the other on-chip DRAs using planar feeding with on-chip ground. The proposed antennas are promising for terahertz applications due to the merits of wide band, high gain and high radiation efficiency.

Cite this article

Download citation ▾
Yun-long Teng. 120 GHz on-chip multi-mode wideband dielectric resonator antennas for THz applications. Optoelectronics Letters, 2020, 16(3): 166-170 DOI:10.1007/s11801-020-9081-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SiegelP H. IEEE Transactions on Microwave Theory and Techniques, 2002, 50: 910

[2]

UzunkolM, GurbuzO D, GolcukF, RebeizG M. IEEE J. Solid-State Circuits, 2013, 48: 2056

[3]

NgH J, KissingerD. IEEE Transactions on Microwave Theory and Techniques, 2018, 66: 2592

[4]

BabakhaniA, GuanX, KomijaniA, NatarajanA, HajimiriA. IEEE Journal of Solid-State Circuits, 2007, 41: 2795

[5]

PanS, CasterF, HeydariP, CapolinoF. IEEE Transactions on Antennas and Propagation, 2014, 62: 4439

[6]

OjeforsE, SonmezE, ChartierS, LindbergL, SchickC, RydbergA, SchumacherH. IEEE Transactions on Microwave Theory and Techniques, 2007, 55: 1467

[7]

JamaliB, BabakhaniA. IEEE Transactions on Microwave Theory and Techniques, 2018, 66: 2313

[8]

NgH J, KucharskiM, AhmadW, KissingerD. IEEE Journal of Solid-State Circuits, 2017, 52: 2242

[9]

MuhammadS K, FarooqA T, AzatM, AtifS, HammadM C. IEEE Antenna and Wireless Propagation Letters, 2019, 18: 1046

[10]

ZhuH, LiX P, FengW W, XiaoJ, ZhangJ H. IET Microwaves, Antennas & Propagation, 2018, 12: 727

[11]

DengX D, LiY, WuW, XiongY Z. IEEE Transactions on Antennas and Propagation, 2015, 63: 5272

[12]

XieH, BelostotskiL, OkoniewskiM. Microwave and Optical Technology Letters, 2016, 58: 347

[13]

Nezhad-AhmadiM R, FakharzadehM, BiglarbegianB, Safavi-NaeiniS. IEEE Transactions on Antennas and Propagation, 2010, 58: 3388

[14]

HouD B, XiongY Z, GohW L, HuS M, HongW, MadihianM. IEEE Transactions on Antennas & Propagation, 2012, 60: 4102

[15]

HouD B, HongW, GohW L, ChenJ X, XiongY Z, HuS M, MadihianM. IEEE Antennas and Propagation Magazine, 2014, 56: 80

[16]

HitzlerM, SauligS, BoehmL, MayerW, WinklerW, UddinN, WaldschmidtC. IEEE Transactions on Microwave Theory and Techniques, 2017, 65: 1682

[17]

LiC H, ChiuT Y. IEEE Transactions on Tera-hertzScience and Technology, 2017, 7: 284

[18]

LiC H, ChiuT Y. IEEE Access, 2019, 7: 7737

[19]

FangX S, LeungK W. IEEE Transactions on Antennas and Propagation, 2011, 59: 2409

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/