A photonic crystal fiber for supporting 30 orbital angular momentum modes with low dispersion

Wei Huang , Yong You , Bin-bin Song , Sheng-yong Chen

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 34 -39.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 34 -39. DOI: 10.1007/s11801-020-9072-7
Article

A photonic crystal fiber for supporting 30 orbital angular momentum modes with low dispersion

Author information +
History +
PDF

Abstract

This paper proposes a novel photonic crystal optical fiber which can support 30 orbital angular momentum (OAM) modes transmission and possesses relatively flat and low dispersion. The OAM modes can be well-separated due to the large effective refractive index difference (above 10−4 ) between the eigenmodes. The only material of the designed fiber is silica. The dispersion of each OAM mode is controlled in the range of 50–100 ps·nm−1·km−1 and the total dispersion variation is below 10 ps·nm−1·km−1 from 1 500 nm to 1 600 nm. Moreover, the confinement loss of each OAM mode is below 8.17×10−10 dB/m at 1 550 nm, and the nonlinear coefficients is less than 0.71 W−1 /km for all modes at 1 550 nm. With all these good features, this proposed optical fiber is promising to be applied in fiber-based OAM communication systems.

Cite this article

Download citation ▾
Wei Huang, Yong You, Bin-bin Song, Sheng-yong Chen. A photonic crystal fiber for supporting 30 orbital angular momentum modes with low dispersion. Optoelectronics Letters, 2020, 16(1): 34-39 DOI:10.1007/s11801-020-9072-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangJ, YangJ Y, FazalI M, AhmedN, YanY, HuangH, RenY X, YueY, DolinarS, TurM, WinnerA E. Nature Photonics, 2012, 6: 488

[2]

BozinovicN, YueY, RenY, TurM, KristensenP, HuangH, WillnerA E, RamachandranS. Science, 2012, 340: 6140

[3]

WangF X, ChenW, LiY P. Optics Express, 2017, 25: 24946

[4]

NicolasA, VeissierL, GinerL, GiacobinoE, MaxeinD, Lau ratJ. Nature Photonics, 2013, 8: 234

[5]

WangJ. Photonics Research, 2016, 4: B14

[6]

GuoH, WangY, LiX, ZhangL, ChiN. Microwave & Optical Technology Letters, 2016, 58: 1866

[7]

WillnerA E, HuangH, YanY, RenY, AhmedN, XieG, BaoC, LiL, CaoY, ZhaoZ, WangJ, J. LaveryM P, TurM, RamachandranS, MolischA F, AshrafiN, AshrafiS. Advances in Optics and Photonics, 2015, 7: 66

[8]

NejadR M, AllahverdyanK, VaityP, AmiralizadehS, BrunetC, MessaddeqY, LaRochelleS, MemberS, RuschL A. Journal of Lightwave Technology, 2016, 34: 4252

[9]

WillnerA J, RenY, XieG, ZhaoZ, CaoY, LiL, AhmedN, WangZ, YanY, LiaoP, LiuC, MirhosseiniM, BoydR W, TurM, WillnerA E. Optics Letters, 2015, 40: 5810

[10]

BrunetC, VaityP, MessaddeqY, LaRochelleS, RuschL A. Optics Express, 2014, 22: 26117

[11]

RamachandranS, GreggP, KristensenP, GolowichS E. Optics Express, 2015, 23: 3721

[12]

LiS, WangJ. Scientific Reports, 2014, 4: 3853

[13]

GreggP, KristensenP, RamachandranS. Optica, 2015, 2: 267

[14]

YanY, YueY, HuangH, YangJ Y, ChitqarhaM R, AhmedN, TurM, DolinarS J, WillnerA E. IEEE Photonics Journal, 2012, 4: 535

[15]

BrunetC, RuschL A. Optical Fiber Technology, 2017, 35: 172

[16]

ZhouG, ZhouG, ChenC, XuM N, XiaC, HouZ. Photonics Journal, 2016, 8: 7802512

[17]

LiH, RenG, LianY, ZhuB, TangM, ZhaoY, JianS. Optics Letters, 2016, 41: 3591

[18]

ZhangH, ZhangW, XiL, TangX, ZhangX, ZhangX. IEEE Photonics Technology Letters, 2016, 28: 1426

[19]

HuZ A, HuangY Q, LuoA P, CuiH, LuoZ C, XuW C. Optics Express, 2016, 24: 17285

[20]

TianW, ZhangH, LiH, TangX, XiL, ZhangW, ZhangX. Optical Fiber Technology, 2016, 30: 184

[21]

JiaC, JiaH, WangN, ChaiJ, XuX, LeiY, LiuG, PengY, XieJ. IEEE Access, 2018, 6: 20291

[22]

YuL, XunX, NingW, HongzhiJ. Journal of Optics, 2018, 20: 105701

[23]

MajiP S, ChaudhuriP R. Isrn Optics, 2013, 2013: 1

[24]

XiuX, HanL H, JiaX Y, WangJ L, YuF Y, YuZ Y. Chin. Opt. Lett., 2015, 13: 010602

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/