A photonic crystal fiber for supporting 30 orbital angular momentum modes with low dispersion
Wei Huang, Yong You, Bin-bin Song, Sheng-yong Chen
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 34-39.
A photonic crystal fiber for supporting 30 orbital angular momentum modes with low dispersion
This paper proposes a novel photonic crystal optical fiber which can support 30 orbital angular momentum (OAM) modes transmission and possesses relatively flat and low dispersion. The OAM modes can be well-separated due to the large effective refractive index difference (above 10−4 ) between the eigenmodes. The only material of the designed fiber is silica. The dispersion of each OAM mode is controlled in the range of 50–100 ps·nm−1·km−1 and the total dispersion variation is below 10 ps·nm−1·km−1 from 1 500 nm to 1 600 nm. Moreover, the confinement loss of each OAM mode is below 8.17×10−10 dB/m at 1 550 nm, and the nonlinear coefficients is less than 0.71 W−1 /km for all modes at 1 550 nm. With all these good features, this proposed optical fiber is promising to be applied in fiber-based OAM communication systems.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
/
〈 |
|
〉 |