Inherent EDFA cross-gain saturation functionality for 17 Gbit/s PAM-3 all-optical wavelength reuse PON

G. M. Isoe, T. B. Gibbon

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 122-125.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 122-125. DOI: 10.1007/s11801-020-9066-5
Article

Inherent EDFA cross-gain saturation functionality for 17 Gbit/s PAM-3 all-optical wavelength reuse PON

Author information +
History +

Abstract

In this work, inherent data-erasing functionality of a saturated erbium doped fibre amplifier (EDFA) is exploited to achieve an all-optical wavelength reuse with pulse amplitude modulation (PAM) format. A 10 GHz bandwidth distributed feedback laser (DFB) is directly modulated with 17 Gbit/s PAM-3 data signal and transmitted downstream over a 26.58 km fibre optical line terminal (OLT) incurring a maximum penalty of 1.81 dB. A saturated EDFA deployed at the optical network unit (ONU) terminal is utilized to optically suppress the extinction ratio of residual 17 Gbit/s PAM-3 downstream data significantly from 7.1 dB to 830 mdB. This facilitates direct reuse of the downstream carrier without the need for an additional electrical data eraser. With the all optical data erasing capability of EDFA over -10 dBm input power, the carrier re-used upstream transmission successfully delivers 17 Gbit/s PAM-3 data with a maximum transmission penalty of 0.99 dB. PAM-3 modulation format maximizes network efficiency by doubling the transmitted bits per symbol. Our technique is all-optical, it can support ultrafast systems with higher modulation formats and is power efficient.

Cite this article

Download citation ▾
G. M. Isoe, T. B. Gibbon. Inherent EDFA cross-gain saturation functionality for 17 Gbit/s PAM-3 all-optical wavelength reuse PON. Optoelectronics Letters, 2020, 16(2): 122‒125 https://doi.org/10.1007/s11801-020-9066-5

References

[1]
YehC-H, ChowC-W, WuY-F, HuangS-P, LiuY-L, PanC-L. Journal of Lightwave Technology, 2013, 31: 1929
CrossRef Google scholar
[2]
JiH-C, YamashitaI, KitayamaK-I. Optics Express, 2008, 16: 4520
CrossRef Google scholar
[3]
ShinD J, JungD K, ShinH S, KwonJ W, HwangS, OhY. Journal of Lightwave Technology, 2005, 23: 187
CrossRef Google scholar
[4]
WeiJ, Hugues-SalasE, GiddingsR, JinX, ZhengX, MansoorS. Optics Express, 2010, 18: 9791
CrossRef Google scholar
[5]
ChowC, YehC, WangC, ShihF, ChiS. Electronics Letters, 2009, 45: 903
CrossRef Google scholar
[6]
ChiY-C, LinC-J, LinS-Y, LinG-R. Journal of Lightwave Technology, 2012, 30: 3096
CrossRef Google scholar
[7]
Q. Guo and A. V. Tran, Journal of Optical Communications and Networking 5, A119 (2013).
[8]
JiaZ, YuJ, EllinasG, ChangG-K. Journal of Lightwave Technology, 2007, 25: 3452
CrossRef Google scholar
[9]
ZhuM, LiF, LuF, YuJ, SuC, GuG. Journal of Lightwave Technology, 2015, 33: 3182
CrossRef Google scholar
[10]
HungW, ChanC K, ChenL K, TongF. An Optical Network Unit for WDM Access Networks with Downstream DPSK and Upstream Re-modulated OOK Data Using Injection-locked FP Laser, Optical Fiber Communication Conference, 2003,
[11]
ShinB, JeongJ, YoonW-S, LeeJ. Optical Fiber Technology, 2017, 36: 222
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/