Inherent EDFA cross-gain saturation functionality for 17 Gbit/s PAM-3 all-optical wavelength reuse PON

G. M. Isoe , T. B. Gibbon

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 122 -125.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 122 -125. DOI: 10.1007/s11801-020-9066-5
Article

Inherent EDFA cross-gain saturation functionality for 17 Gbit/s PAM-3 all-optical wavelength reuse PON

Author information +
History +
PDF

Abstract

In this work, inherent data-erasing functionality of a saturated erbium doped fibre amplifier (EDFA) is exploited to achieve an all-optical wavelength reuse with pulse amplitude modulation (PAM) format. A 10 GHz bandwidth distributed feedback laser (DFB) is directly modulated with 17 Gbit/s PAM-3 data signal and transmitted downstream over a 26.58 km fibre optical line terminal (OLT) incurring a maximum penalty of 1.81 dB. A saturated EDFA deployed at the optical network unit (ONU) terminal is utilized to optically suppress the extinction ratio of residual 17 Gbit/s PAM-3 downstream data significantly from 7.1 dB to 830 mdB. This facilitates direct reuse of the downstream carrier without the need for an additional electrical data eraser. With the all optical data erasing capability of EDFA over -10 dBm input power, the carrier re-used upstream transmission successfully delivers 17 Gbit/s PAM-3 data with a maximum transmission penalty of 0.99 dB. PAM-3 modulation format maximizes network efficiency by doubling the transmitted bits per symbol. Our technique is all-optical, it can support ultrafast systems with higher modulation formats and is power efficient.

Cite this article

Download citation ▾
G. M. Isoe, T. B. Gibbon. Inherent EDFA cross-gain saturation functionality for 17 Gbit/s PAM-3 all-optical wavelength reuse PON. Optoelectronics Letters, 2020, 16(2): 122-125 DOI:10.1007/s11801-020-9066-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YehC-H, ChowC-W, WuY-F, HuangS-P, LiuY-L, PanC-L. Journal of Lightwave Technology, 2013, 31: 1929

[2]

JiH-C, YamashitaI, KitayamaK-I. Optics Express, 2008, 16: 4520

[3]

ShinD J, JungD K, ShinH S, KwonJ W, HwangS, OhY. Journal of Lightwave Technology, 2005, 23: 187

[4]

WeiJ, Hugues-SalasE, GiddingsR, JinX, ZhengX, MansoorS. Optics Express, 2010, 18: 9791

[5]

ChowC, YehC, WangC, ShihF, ChiS. Electronics Letters, 2009, 45: 903

[6]

ChiY-C, LinC-J, LinS-Y, LinG-R. Journal of Lightwave Technology, 2012, 30: 3096

[7]

Q. Guo and A. V. Tran, Journal of Optical Communications and Networking 5, A119 (2013).

[8]

JiaZ, YuJ, EllinasG, ChangG-K. Journal of Lightwave Technology, 2007, 25: 3452

[9]

ZhuM, LiF, LuF, YuJ, SuC, GuG. Journal of Lightwave Technology, 2015, 33: 3182

[10]

HungW, ChanC K, ChenL K, TongF. An Optical Network Unit for WDM Access Networks with Downstream DPSK and Upstream Re-modulated OOK Data Using Injection-locked FP Laser, Optical Fiber Communication Conference, 2003,

[11]

ShinB, JeongJ, YoonW-S, LeeJ. Optical Fiber Technology, 2017, 36: 222

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/