420-GHz terahertz SIW slot antenna with quartz superstrates in silicon technology

Peng-lin Sun

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 25-28.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 25-28. DOI: 10.1007/s11801-020-9063-8
Article

420-GHz terahertz SIW slot antenna with quartz superstrates in silicon technology

Author information +
History +

Abstract

To meet the needs of terahertz imaging and communication, a 420-GHz on-chip antenna (OCA) with high gain and high radiation efficiency is designed using a standard 55 nm CMOS technology. In the proposed OCA structure, the substrate integrated waveguide (SIW) antenna forms a back cavity to suppress the surface waves and separate the radiation aperture from the low-resistivity substrate. To increase the efficiency of OCA, a single-layer quartz superstrate is proposed. An analytical model to calculate the radiation efficiency is presented, and a detailed design approach is described. The proposed antenna is simulated using Ansoft HFSS. The simulated antenna has a maximum gain of 4.9 dBi and a radiation efficiency of 76.27%. The bandwidth of S11 below −10 dB is 44 GHz. The OCA has good performance and can be widely used in terahertz imaging and communication.

Cite this article

Download citation ▾
Peng-lin Sun. 420-GHz terahertz SIW slot antenna with quartz superstrates in silicon technology. Optoelectronics Letters, 2020, 16(1): 25‒28 https://doi.org/10.1007/s11801-020-9063-8

References

[1]
SiegelP H. IEEE Transactions on Microwave The ory & Techniques, 2002, 50: 910
CrossRef Google scholar
[2]
LiuZ-y, LiuL-y, YangJ, WuN-j. IEEE Transactions on Terahertz Science & Technology, 2017, 7: 455
CrossRef Google scholar
[3]
MirzaA F, SeeC H, DanjumaI M. Rameez Asif and Raed Abd-Alhameed. IEEE Sensors Journal, 2017, 17: 2749
CrossRef Google scholar
[4]
ChumaE L, IanoY, FontgallandG, RogerL L B. IEEE Sensors Journal, 2018, 18: 9978
CrossRef Google scholar
[5]
BreitenbornH, NaccacheR, MazhorovaA, ClericiM, PiccoliR. 42nd International Conference on Infrared, Millimeter, and Terahertz Waves, 2017, 2162
[6]
LiZ, QiB, ZhangX, ZeinolabedinzadehS, SangL. IEEE Transactions on Terahertz Science & Technology, 2018, 8: 215
CrossRef Google scholar
[7]
HillgerP, JainR, GrzybJ, FörsterW, HeinemannB. IEEE Journal of Solid-State Circuits, 2018, 53: 3599
CrossRef Google scholar
[8]
Al-NaibI. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23: 4700405
CrossRef Google scholar
[9]
DhillonS S, VitielloM S, LinfieldE H, DaviesA G, HoffmannM C. Journal of Physics D: Applied Physics, 2017, 50: 043001
CrossRef Google scholar
[10]
DengX-D, LiY, WuW, XiongY-Z. IEEE Transactions on Antennas & Propagation, 2015, 63: 5272
CrossRef Google scholar
[11]
HanR, JiangC, MostajeranA, EmadiM, AghasiH. IEEE Journal of Solid-State Circuits, 2015, 50: 2935
CrossRef Google scholar
[12]
HadiR A, GrzybJ, HeinemannB, PfeifferU R. IEEE Journal of Solid-State Circuits, 2013, 48: 2002
CrossRef Google scholar
[13]
HouD, XiongY-Z, GohW-L, HuS, HongW. IEEE Transactions on Antennas & Propagation, 2012, 60: 4102
CrossRef Google scholar
[14]
LiC-H, ChiuT-Y. IEEE Transactions on Terahertz Science & Technology, 2017, 7: 284
CrossRef Google scholar
[15]
EdwardsJ M, RebeizG M. IEEE Transactions on Antennas & Propagation, 2012, 60: 5010
CrossRef Google scholar
[16]
XieH, BelostotskiL, OkoniewskiM. Microwave & Optical Technology Letters, 2016, 60: 347
CrossRef Google scholar
[17]
JacksonD R, AlexopoulosN G. IEEE Transactions on Antennas & Propagation, 1991, 39: 407
CrossRef Google scholar
[18]
JacksonD R, AlexopoulosN G. IEEE Transactions on Antennas & Propagation, 1985, 33: 976
CrossRef Google scholar
[19]
HuS, XiongY-Z, ZhangB, WangL, LimT-G. IEEE Journal of Solid-State Circuits, 2012, 47: 2654
CrossRef Google scholar
[20]
SeokE, CaoC, ShimD, ArenasD J, TannerD B. IEEE International Solid-State Circuits Conference, 2008, 472

Accesses

Citations

Detail

Sections
Recommended

/