Appropriate method of core selection and crosstalk optimization in single-mode homogeneous multicore fiber

Kumar Dablu, Ranjan Rakesh

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 126-130.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (2) : 126-130. DOI: 10.1007/s11801-020-9048-7
Article

Appropriate method of core selection and crosstalk optimization in single-mode homogeneous multicore fiber

Author information +
History +

Abstract

The approach for homogeneous core structure design and selection based on low crosstalk, low dispersion, and acceptable mode effective area have been explored. The forward and backward crosstalk behaviors with respect to wavelength, fiber bending radius, and twisting rate in 12-core, and 21-core single-mode trench-assisted homogenous multicore fiber have been analyzed. The new expression for forward crosstalk under bending and twisting conditions has been derived using the conventional method. For the analysis and optimization of crosstalk, three different core structures are considered, it helps to draw the attention to select the appropriate core structure model for multicore fiber, which follows the standards used in telecom services.

Cite this article

Download citation ▾
Kumar Dablu, Ranjan Rakesh. Appropriate method of core selection and crosstalk optimization in single-mode homogeneous multicore fiber. Optoelectronics Letters, 2020, 16(2): 126‒130 https://doi.org/10.1007/s11801-020-9048-7

References

[1]
DesurvireE B. Journal of Lightwave Technology, 2006, 24: 4697
CrossRef Google scholar
[2]
EssiambreR J, RyfR, FontaineN K, RandelS. IEEE Photonics Journal, 2013, 5: 0701307
CrossRef Google scholar
[3]
RichardsonD J, FiniJ M, NelsonL E. Nature Photonics, 2013, 7: 354
CrossRef Google scholar
[4]
HayashiT, TaruT, ShimakawaO, SasakiT, SasaokaE. Optics Express, 2011, 19: 16576
CrossRef Google scholar
[5]
KoshibaM, SaitohK, TakenagaK, MatsuoS. Optics Express, 2011, 19: B102
CrossRef Google scholar
[6]
FiniJ M, ZhuB, TaunayT F, YanM F. Optics Express, 2010, 18: 15122
CrossRef Google scholar
[7]
SaitohK, MatsuoS. Journal of Lightwave Technology, 2016, 34: 55
CrossRef Google scholar
[8]
SanoA, TakaraH, KobayashiT, MiyamotoY. Journal of Lightwave Technology, 2014, 32: 27719
CrossRef Google scholar
[9]
YeF, TuJ, SaitohK, TakenagaK, MatsuoS, TakaraH, MoriokaT. Journal of Lightwave Technology, 2016, 34: 4406
CrossRef Google scholar
[10]
KumarD, RanjanR. Optical Fiber Technology, 2018, 41: 95
CrossRef Google scholar
[11]
Pei-peiZ, Jian-quanY, Hai-xiaC, YingL. Optoelectronics Letters, 2013, 9: 342
CrossRef Google scholar
[12]
Ru-yuanY, Hong-junZ, XinL, Cheng-linB, Wei-shengH. Optoelectronics Letters, 2018, 14: 30
CrossRef Google scholar
[13]
YanL, Li YangL, Wei-dongL. Optoelectronics Letters, 2018, 14: 88
CrossRef Google scholar
[14]
V. T. CartaxoA, M. F. ^AlvesT. Journal of Lightwave Technology, 2017, 35: 2398
CrossRef Google scholar
[15]
K. Okamoto, Fundamentals of Optical Waveguides, 2nd edition, Academic Press, San Diego, 183 (2006).
[16]
AozasaS, TsujikawaK, SakamotoT, NozoeS, NakajimaK. Crosstalk Reduction in Multi-Core Fiber Using Uniform Twist, 2018,
CrossRef Google scholar
[17]
KumarD, RanjanR. Optical Engineering, 2019, 58: 056109
[18]
KumarD, RanjanR. Quantum Electronics, 2019, 41: 1045
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/