First principles calculation of the electronic-optical properties of Cu2MgSn(SxSe1−x)4

Ding Sun , Yan-yan Ding , Ling-wei Kong , Ling-qun Wang , Bai-xiu Ding , Yu-hong Zhang , Li-ming Wei , Li Zhang , Li-xin Zhang

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 29 -33.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 29 -33. DOI: 10.1007/s11801-020-9042-0
Article

First principles calculation of the electronic-optical properties of Cu2MgSn(SxSe1−x)4

Author information +
History +
PDF

Abstract

Based on the density functional theory with hybrid functional approach, we calculated the structural, electronic, and the optical properties of Cu2MgSn(S1-xSex)4 (CMTSSe), an potential photovoltaic material for thin film solar cells. The calculation reveals a phase transition from kesterite to stannite structure when Zn atoms are substituted by Mg atoms. In particular, the S-to-Se ratio can determine the energy splitting between the electronic states at the top of the valence band. The band gaps of CMTSSe can be tuned in the ranges of 1.01-1.58 eV. Calculated optical properties and tunable band gaps make them beneficial for achieving band-gap-graded solar cells.

Cite this article

Download citation ▾
Ding Sun, Yan-yan Ding, Ling-wei Kong, Ling-qun Wang, Bai-xiu Ding, Yu-hong Zhang, Li-ming Wei, Li Zhang, Li-xin Zhang. First principles calculation of the electronic-optical properties of Cu2MgSn(SxSe1−x)4. Optoelectronics Letters, 2020, 16(1): 29-33 DOI:10.1007/s11801-020-9042-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MinX, ShiJ J, GuoB L, YuQ, ZhangP P, TianQ W, LiD M, LuoY H, WuH J, MengQ B, WuS X. Chin. Phys. B, 2018, 27: 016402

[2]

RepinsI, BeallC, VoraN, DeHartC, KuciauskasD, DippoP, ToB, MannJ, HsuW C, GoodrichA, NoufiR. Sol. Energ. Mater. Sol. C, 2012, 101: 154

[3]

WangW, WinklerM T, GunawanO, GokmenT, TodorovT K, ZhuY, MitziD B. Adv. Energy Mater., 2013, 4: 1301465

[4]

GokmenT, GunawanO, TodorovT K, MitziD B. Appl. Phys. Lett., 2013, 103: 103506

[5]

OzelF, KusM A, ArkanE, CanM, AljabourA. J. Mater. Sci., 2015, 50: 777

[6]

WeiM, DuQ, WangR, JiangG, LiuW, ZhuC. Chem. Lett., 2014, 43: 1149

[7]

BekkiB, AmaraK, KeurtiM E. Chin. Phys. B, 2017, 26: 294

[8]

ZhongG, TseK, ZhangY, LiX, HuangL, YangC, ZhuJ, ZengZ, ZhangZ, XiaoX. Thin Solid Film, 2016, 603: 224

[9]

KresseG, FurthmuellerJ. Comput. Mater. Sci., 1996, 6: 15

[10]

KresseG, JoubertD. Phys. Rev. B, 1999, 59: 1758

[11]

HeydJ, ScuseriaG E, ErnzerhofM. J. Chem. Phys., 2003, 118: 8207

[12]

PerdewJ P, BurkeK, ErnzerhofM. Phys. Rev. Lett., 1997, 77: 3865

[13]

XiaoW, WangJ N, ZhaoX S, WangJ W, HuangG J, ChengL, JiangL J, WangL G. Sol. Energy, 2015, 116: 125

[14]

ChenS, GongX G, WalshA, WeiS H. Phys. Rev. B, 2009, 79: 165211

[15]

KhareA, HimmetogluB, CococcioniM, AydilE S. J. Appl. Phys., 2012, 111: 123704

[16]

VegardL. Zeitschrift Fur Physik A Hadrons and Nuclei, 1921, 5: 17

[17]

HarbM, SautetP, NurlaelaE, RaybaudP C, DomenK, BassetJ M, TakanaeK. Phys. Chem. Chem. Phys., 2014, 6: 20548

[18]

HarbM. J. Phys. Chem. C, 2015, 119: 4565

[19]

GajdošM, HummerK, KresseG, FurthmüllerJ, BechstedtF. Phys. Rev. B, 2006, 73: 45112

[20]

Ambrosch-DraxlC, SofoJ O. Comput. Phys. Commun., 2006, 175: 1

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/