Study on picosecond pulse-train multi-wavelength Raman laser operating at two Raman modes without tuning

Xiao-qiang Gao, Meng Chen

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 17-20.

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (1) : 17-20. DOI: 10.1007/s11801-020-9037-x
Article

Study on picosecond pulse-train multi-wavelength Raman laser operating at two Raman modes without tuning

Author information +
History +

Abstract

The Stokes line of multi-mode Raman laser was limited by low conversion efficiency of higher-order Stokes and the competition between pure cascaded stimulated Raman scattering (SRS) and Four-wave-mixing (FWM) process which will deplete the pump of SRS process. Through developed pulse-train synchronously pumping technique and two-Raman-mode operating, the orders of output Stokes was improved. With average power of 220mW, the developed a Raman laser providing up to 5 orders Stokes output, containing up to 16 laser lines without tuning operating and four-wave-mixing process.

Cite this article

Download citation ▾
Xiao-qiang Gao, Meng Chen. Study on picosecond pulse-train multi-wavelength Raman laser operating at two Raman modes without tuning. Optoelectronics Letters, 2020, 16(1): 17‒20 https://doi.org/10.1007/s11801-020-9037-x

References

[1]
AlthausenD, MuellerD, AnsmannA, WandingerU, HubeH, ClauderE, ZoernerS. Journal of Atmospheric and Oceanic Technology, 1999, 17: 1469
CrossRef Google scholar
[2]
HamalK, ProchazkaI, BlazejJ, FuminY, JingfuH, GaignebetJ. Lasers for Multi-wavelength Satellite Laser Ranging, 2002, 13thWashington D.C., ILRW
[3]
AndreasZ, HoltomG R, XieX S. Physical Review Letters, 1999, 82: 4142
CrossRef Google scholar
[4]
TakahashiE, LosevL L, MatsumotoY, OkudaI, MatsushimaI, KatoS, NakamuraH, KuwaharaK, OwadanoY. Optics Communications, 2002, 215: 163
CrossRef Google scholar
[5]
DingX, FanC, ShengQ, LiB, YuX, ZhangG, SunB, WuL, ZhangH, LiuJ, JiangP, ZhangW, ZhaoC, YaoJ. Optics Express, 2014, 22: 29111
CrossRef Google scholar
[6]
FindeisenJ, EichlerH J, KaminskiiA A. IEEE Journal of Quantum Electronics, 1999, 35: 173
CrossRef Google scholar
[7]
SheintopU, SebbagD, KommP, PearlS, MarcusG, NoachS. Optics Express, 2019, 27: 17112
CrossRef Google scholar
[8]
NoachS, SheintopU, SebbagD, KommP, MarcusG. Selective Wavelength KGW/ Tm:YLF Raman Laser, 2019,
[9]
ChenM, DaiS, ZhuS, YinH, LiZ, ChenZ. Journal of the Optical Society of America B, 2019, 36: 524
CrossRef Google scholar
[10]
MildrenR P, PaskH M, PiperJ A. High-Efficiency Raman Converter Generating 1.5W of Red-Orange Output, Advanced Solid-State Photonics, Technical Digest, MC3, 2006,
[11]
ChenY F, LiuY C, PanY Y, GuD Y, ChengH P, TsouC H, LiangH C. Optics Letters, 2019, 44: 1323
CrossRef Google scholar
[12]
David JS, GranadosE, MildrenR P. Optics Express, 2011, 19: 10857
CrossRef Google scholar
[13]
TakuyaT, HirakawaY, ImasakaT. Journal of Light & Visual Environment, 2008, 22: 1
[14]
MildrenR P, PiperJ A. Optics Express, 2008, 16: 3261
CrossRef Google scholar
[15]
XiaoqiangG, ChenM. Applied Optics, 2017, 56: 5
[16]
MochalovI V. Journal of Optical Technology C/c of Opticheskii Zhurnal, 1995, 62: 746
[17]
DharmadhikariJ A, DharmadhikariA K, KumarG R. Applied Physics Letters, 2003, 83: 2527
CrossRef Google scholar
[18]
XiaoqiangG, ChenM. Applied Physics B, 2017, 123: 133
[19]
WangX, KangW, SongX, XieP, ZongN, TuW. Optics Communications, 2017, 385: 9
CrossRef Google scholar
[20]
MarshallL R, PiperJ A. Optics Letters, 1990, 15: 1345
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/