Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer
Ping-yang Huang , Long-fei Xiao , Xiu-fang Chen , Qing-pu Wang , Ming-sheng Xu , Xian-gang Xu , Jing Huang
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 279 -283.
Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer
The low internal quantum efficiency (IQE) of AlGaN-based deep ultraviolet light emitting diode (DUV-LED) limits its wider application. The main reasons for low IQE include low carrier concentration, poor carrier location and large defects. The bending of energy band between AlGaN electron blocking layer and conduction layer obstructs transport of holes to multiple quantum wells. In this paper, we propose a gradual Al-composition p-type AlGaN (p-AlGaN) conduction layer to improve the light emitting properties of AlGaN-based DUV-LED. Increased carrier concentration in the active region enhances the effective radiative recombination rate of the LED. Consequently, the IQE of our optimazited DUV-LED is increased by 162% in comparison with conventional DUV-LEDs.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
APSYS (Version 2010), Crosslight Software Inc., Burnaby, Canada. |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
/
| 〈 |
|
〉 |