Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer

Ping-yang Huang , Long-fei Xiao , Xiu-fang Chen , Qing-pu Wang , Ming-sheng Xu , Xian-gang Xu , Jing Huang

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 279 -283.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (4) : 279 -283. DOI: 10.1007/s11801-020-0072-4
Article

Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer

Author information +
History +
PDF

Abstract

The low internal quantum efficiency (IQE) of AlGaN-based deep ultraviolet light emitting diode (DUV-LED) limits its wider application. The main reasons for low IQE include low carrier concentration, poor carrier location and large defects. The bending of energy band between AlGaN electron blocking layer and conduction layer obstructs transport of holes to multiple quantum wells. In this paper, we propose a gradual Al-composition p-type AlGaN (p-AlGaN) conduction layer to improve the light emitting properties of AlGaN-based DUV-LED. Increased carrier concentration in the active region enhances the effective radiative recombination rate of the LED. Consequently, the IQE of our optimazited DUV-LED is increased by 162% in comparison with conventional DUV-LEDs.

Cite this article

Download citation ▾
Ping-yang Huang, Long-fei Xiao, Xiu-fang Chen, Qing-pu Wang, Ming-sheng Xu, Xian-gang Xu, Jing Huang. Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer. Optoelectronics Letters, 2020, 16(4): 279-283 DOI:10.1007/s11801-020-0072-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NakamuraS. Journal of Crystal Growth, 1994, 145: 911

[2]

LozanoG, RodriguezSR, VerschuurenMA, RivasJG. Light: Science & Applications, 2016, 5: e16080

[3]

ChenC-J, ChenH-C, LiaoJ-H, YuC-J, WuM-C. IEEE Journal of Quantum Electronics, 2019, 55: 3300106

[4]

MeiS, LiuX, ZhangW, LiuR, ZhengL, GuoR, TianP. ACS Applied Materials & Interfaces, 2018, 10: 5641

[5]

SharmaR, KumariAC, AggarwalM, AhujaS. Physical Communication, 2019, 33: 222

[6]

RattanakulS, OgumaK. Water Research, 2018, 130: 31

[7]

GassieLW, EnglehardtJD. Water Research, 2017, 125: 384

[8]

ZhouX, LiZ, LanJ, YanY, ZhuN. Ultrasonics Sonochemistry, 2017, 35: 471

[9]

FischerM, WahlM, FriedrichsG. Biosensors and Bioelectronics, 2012, 33: 172

[10]

KraiczekKG, BonjourR, SalvadéY, RolandZ. Analytical Chemistry, 2014, 86: 1146

[11]

BryanZ, BryanI, XieJ, MitaS, SitarZ, CollazoR. Applied Physics Letters, 2015, 106: 142107

[12]

PanthaBN, DahalR, NakarmiML, NepalN, LiJ, LinJY, JiangHX, PaduanoQS, WeyburneD. Applied Physics Letters, 2007, 90: 241101

[13]

KimJ, PyeonJ, JeonM, NamO. Japanese Journal of Applied Physics, 2015, 54: 081001

[14]

PengD, YanJ, WangJ, ZhangY, GengC, WeiT, ConvP, ZhangY, ZengJ, TianY, SunL, YanQ, LiJ, FanS, QinZ. Applied Physics Letters, 2013, 102: 241113

[15]

HirayamaH, FujikawaS, NoguchiN, NorimatsuJ, TakanoT, TsubakiK, KamataN. Physica Status Solidi (a), 2009, 206: 1176

[16]

ZhangZ-H, ChuC, ChiuC H, LuT C, LiL, ZhangY, TianK, FangM, SunQ, KuoH-C, BiW. Optics Letters, 2017, 42: 4533

[17]

LiF, WangL, ZhaoG, MengY, LiH, YangS, WangZ. Superlattices & Microstructures, 2017, 110: 324

[18]

ZhangZH, ChenSWH, ZhangY, LiL, WangSW, TianK, ChuC, FangM, KuoHC, BiW. ACS Photonics, 2017, 4: 1846

[19]

LinL, YuZ, XuF, DingG, LiuY. Superlattices & Microstructures, 2018, 118: 55

[20]

ZhangYY, YaoGR. Journal of Applied Physics, 2011, 110: 977

[21]

NgoTH, GilB, DamilanoB, LekhalK, MierryPD. Superlattices & Microstructures, 2017, 103: 245

[22]

XuM, ZhouQ, ZhangH, HongW, ZhangX. Superlattices & Microstructures, 2016, 94: 25

[23]

SimonJ, ProtasenkoV, LianC, XingH, JenaD. Science, 2010, 327: 60

[24]

APSYS (Version 2010), Crosslight Software Inc., Burnaby, Canada.

[25]

XiaCS, Simon LiZ M, ShengY. Applied Physics Letters, 2013, 103: 233505

[26]

KimS-J, LeeKJ, OhS, HanJ-H, LeeD-S, ParkS-J. Optics Express, 2019, 27: A458

[27]

HuiningW, ZiwuJ, ShuangQ, GangW, YongzhiJ, BaoliL, XiangangX, HirofumiM. Optics Express, 2012, 20: 3932

[28]

LiuG, ZhaoH, JingZ, TansuN, ArifRA. Journal of Display Technology, 2013, 9: 212

[29]

HirayamaH, FujikawaS, KamataN. Electronics & Communications in Japan, 2015, 98: 1

[30]

ZhangZH, KouJ, ChenSWH, ShaoH, CheJ, ChuC, TianK, ZhangY, WengangBI, KuoHC. Photonics Research, 2019, 7: B1

[31]

WangS, YiAY, GuH, WangN, LiL. Journal of Display Technology, 2016, 12: 1112

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/