Compact external cavity diode laser for quantum experiments

Chun-hua Wei , Cheng-lin Zuo , Lei Liang , Shu-hua Yan

Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 433 -436.

PDF
Optoelectronics Letters ›› 2020, Vol. 16 ›› Issue (6) : 433 -436. DOI: 10.1007/s11801-020-0022-1
Article

Compact external cavity diode laser for quantum experiments

Author information +
History +
PDF

Abstract

We present a compact and practical scheme of building a ∼780 nm external cavity diode laser (ECDL) whose wavelength is mainly determined by an interference filter. The Lorentzian linewidth measured by the heterodyne beating between two identical lasers is 60 kHz, and the geometry size of the laser is only 71.5 mm×65 mm×40 mm. The linear cavity design is less sensitive to misalignment induced by mechanical and thermal disturbances, and in comparison to a common grating-based design, the sensitivity to vibration is substantially reduced. Due to its excellent performance, the laser design has already been applied to cold atom trapping experiments. This interference filter ECDL method can also be extended to other wavelengths and widen the application range of diode laser.

Cite this article

Download citation ▾
Chun-hua Wei, Cheng-lin Zuo, Lei Liang, Shu-hua Yan. Compact external cavity diode laser for quantum experiments. Optoelectronics Letters, 2020, 16(6): 433-436 DOI:10.1007/s11801-020-0022-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DuanX, ChenC, DingY, YaoB, WangY. Chin. Phys. Lett., 2018, 35: 054205

[2]

WhiteJ D, ScholtenR E. Chinese Physics B., 2016, 25: 083201

[3]

WangZ, LuX, ChenJ. Chinese Optics Letters, 2011, 9: 041402

[4]

ThompsonD J, ScholtenR E. Review of Scientific Instruments, 2012, 83: 023107

[5]

SalibaS D, ScholtenR E. Applied Optics, 2009, 48: 6961

[6]

MeyerN, ProudH, Perea-OrtizM, O’NealeC, BaumertM, HolynskiM, KronjägerJ, BarontiniG, BongsK. Physical Review Letters, 2017, 119: 150403

[7]

BergP, AbendS, TackmannG, SchubertC, GieseE, SchleichW P, NarducciF, ErtmerW, RaselE M. Physical Review Letters, 2015, 114: 063002

[8]

MerletS, BodartQ, MalossiN, LandraginA, Pereira Dos SantosF, GitleinO, TimmenL. Metrologia, 2010, 47: L9-L11

[9]

FreierC, HauthM, SchkolnikV, LeykaufB, SchillingM, WziontekH, ScherneckH-G, MüllerJ, PetersA. Journal of Physics: Conference Series, 2016, 723: 012050

[10]

SchmidtM, SengerA, HauthM, FreierC, SchkolnikV, PetersA. Gyroscopy and Navigation, 2011, 2: 170

[11]

HofT, FickD, JänschH J. Optics Communications, 1996, 124: 283

[12]

HarveyK C, MyattC J. Optics Letters, 1991, 16: 910

[13]

RicciL, WeidemüllerM, EsslingerT, HemmerichA, ZimmermannC, VuleticV, KönigW, HänschT W. Optics Communications, 1995, 117: 541

[14]

ArnoldA S, WilsonJ S, BoshierM G. Review of Scientific Instruments, 1998, 69: 1236

[15]

LiQ, ZhangX, ZhuL, YanS, JiaA, LuoY, WangY, WeiC, ZhangH, LvM, WangG, YangJ. Optics and Laser in Engineering, 2020, 126: 105881

[16]

BaillardX, GauguetA, BizeS, LemondeP, LaurentPh, ClaironA, RosenbuschP. Optics Communications, 2006, 266: 609

[17]

WeiC, KuhnC C N. Journal of Modern Optics, 2018, 65: 1226

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/