The application of porous Si photonic crystals for metal-resonance enhanced fluorescence

Jia-jia Wang, Zhen-hong Jia

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 439-443.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 439-443. DOI: 10.1007/s11801-019-9035-z
Article

The application of porous Si photonic crystals for metal-resonance enhanced fluorescence

Author information +
History +

Abstract

This paper has demonstrated the resonance fluorescence enhancement of R6G when gold nanoparticles (Au NPs) deposited in the porous Si photonic crystal device. Both of microcavity (MC) and distributed Bragg reflector (DBR) with different parameters are investigated for making the photon transmission of photonic crystal device play an optimal role in enhancing fluorescence resonance. While minor changes were observed on the DBR substrates, a significant change in the intensity of enhanced fluorescence varies with the defect modes of MC substrates. Particularly, the strongest enhancement has been presented as the MC defect mode wavelength located at the maximum absorption wavelength of Au NPs. In this case, the fluorescence intensity of R6G on MC device is 2.5 times of that of R6G based on DBR device.

Cite this article

Download citation ▾
Jia-jia Wang, Zhen-hong Jia. The application of porous Si photonic crystals for metal-resonance enhanced fluorescence. Optoelectronics Letters, 2019, 15(6): 439‒443 https://doi.org/10.1007/s11801-019-9035-z

References

[1]
CanhamL T. Properties of Porous Silicon, INSPEC, Institution of Electrical Engineers, 1997,
[2]
LvX Y, MoJ Q, TuY X, ZhongF R, JiangT, JiaZ Z, LiJ W, ZhangF C. Optoelectronics Letters, 2010, 6: 314
CrossRef Google scholar
[3]
SaarinenJ, WeissS, FauchetP, SipeJ E. Optics Express, 2005, 13: 3754
CrossRef Google scholar
[4]
De StefanoL, RotirotiL, ReaI, De TommasiE, RendinaI, CancielloM, MaglioG, PalumboR. Journal of Applied Physics, 2009, 106: 023109
CrossRef Google scholar
[5]
JaneA, DronovR V, HodgesA, VoelckerN H. Trends in Biotechnology, 2009, 27: 230
CrossRef Google scholar
[6]
ZhaoY L, LawrieJ L, BeaversK R, LaibinisP E, WeissS M. ACS Applied Materials & Interfaces, 2014, 6: 13510
CrossRef Google scholar
[7]
LuX, IshidaY, YonezawaT. New Journal of Chemistry, 2015, 39: 6267
CrossRef Google scholar
[8]
JenieS N A, PaceS, SciaccaB, BrooksR D, PlushS E, VoelckerN H. ACS Applied Materials & Interfaces, 2014, 6: 12012
CrossRef Google scholar
[9]
LevitskyI A, EulerW B, TokranovaN, RoseA. Applied Physics Letters, 2007, 90: 041904/1
CrossRef Google scholar
[10]
OngP L, LevitskyI A. IEEE Sensors Journal, 2011, 11: 2947
CrossRef Google scholar
[11]
RossiA M, WangL, ReipaV, MurphyT E. Biosensors & Bioelectronics, 2007, 23: 741
CrossRef Google scholar
[12]
WorsfoldO, VoelckerN H, NishiyaT. Langmuir: The ACS Journal of Surfaces & Colloids, 2006, 22: 7078
CrossRef Google scholar
[13]
LiuC, JiaZ, LvX, LvC, ShiF. Physica B Condensed Matter, 2015, 457: 263
CrossRef Google scholar
[14]
PalestinoA G, DelM M B, Del RioJ A, GergelyC, Pe RezE. Applied Physics Letters, 2007, 91: 121909
CrossRef Google scholar
[15]
JenieS N A, Prieto-SimonB, VoelckerN H. Biosensors & Bioelectronics, 2015, 74: 637
CrossRef Google scholar
[16]
KrismastutiF S H, PaceS, VoelckerN H. Advanced Functional Materials, 2014, 24: 3639
CrossRef Google scholar
[17]
ZhangY, MaliB L, GeddesC D. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2012, 85: 134
CrossRef Google scholar
[18]
WangH, AnZ H, RenQ J, WangH L, ChenZ H, ShenX C. Nanoelectronics Conference (INEC), 2010 3rd International. IEEE, 2010, 787
CrossRef Google scholar
[19]
FujiiK, IyiN, SasaiR, HayashiS. Chemistry of Materials, 2008, 20: 2994
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/