Effect of MoSe2 on the performance of CIGS solar cells

Hao-yu Sun, Peng-hai Li, Yu-ming Xue, Zai-xiang Qiao, Liu Sai

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 428-434.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 428-434. DOI: 10.1007/s11801-019-9027-z
Article

Effect of MoSe2 on the performance of CIGS solar cells

Author information +
History +

Abstract

A CuIn1-xGaxSe2 (CIGS) thin film solar cell model with MoSe2 transition layer was established, using SCAPS-1D software. The influence of MoSe2 interface layer formed between absorption layer CIGS and the back contact Mo on the solar cell performance was investigated. By changing the doping concentration, thickness and bandgap of MoSe2 layer, it is found that the MoSe2 and the variation of parameters have a significant effect on the electrical characteristics and photovoltaic parameters of CIGS thin film solar cells. Based on the energy band, the interfaces of Mo/MoSe2 and MoSe2/CIGS are analyzed. It is considered that Mo/MoSe2 is a Schottky contact, MoSe2/CIGS is an ohmic contact. When suitable parameters of MoSe2 layer are formed into the interface, it will provide a new path for designing CIGS solar cells with thinner absorption layer.

Cite this article

Download citation ▾
Hao-yu Sun, Peng-hai Li, Yu-ming Xue, Zai-xiang Qiao, Liu Sai. Effect of MoSe2 on the performance of CIGS solar cells. Optoelectronics Letters, 2019, 15(6): 428‒434 https://doi.org/10.1007/s11801-019-9027-z

References

[1]
JacksonP, WuerzR, HariskosD, LotterE, WitteW, PowallaM. Physica Status Solidi (RRL) — Rapid Research Letters, 2016, 10: 583
CrossRef Google scholar
[2]
AssmannL, BernèdeJ C. Applied Surface Science, 2005, 246: 159
CrossRef Google scholar
[3]
KoharaN, NishiwakS, HashimotoY, NegamiT, WadaT. Solar Energy Materials & Solar Cells, 2001, 67: 209
CrossRef Google scholar
[4]
Ahamed E. M. K. I., Matin M. A. and Amin N., Modeling and Simulation of Highly Efficient Ultrathin CIGS Solar Cell with MoSe2 Tunnel, 4th International Conference on Advances in Electrical Engineering, 681 (2017).
[5]
NishiwakiS, KoharaN, NegamiT. Thin Solid Films, 1997, 485: 118
[6]
FriendR H, YoffeA D. Advances in Physics, 1987, 36: 1
CrossRef Google scholar
[7]
MoustafaM, ZandtT, JanowitzC. Physical Review B, 2009, 80: 1132
CrossRef Google scholar
[8]
Eftekhari, Ali. Applied Materials Today, 2017, 8: 1
CrossRef Google scholar
[9]
BurgelmanM, DecockK, KhelifiS, AbassA. Thin Solid Films, 2013, 535: 296
CrossRef Google scholar
[10]
BurgelmanM, NolletP, DegraveS. Thin Solid Films, 2000, 361: 527
CrossRef Google scholar
[11]
JehlZ, ErfurthF, NaghaviN, LombezL, GerardI, BouttemyM, Tran-VanP, EtcheberryA, VoorwindenG, DimmlerB, WischmannW, PowallaM, GuillemolesJF, LincotD. Thin Solid Films, 2001, 519: 7212
CrossRef Google scholar
[12]
RostanP J, MattheisJ, BilgerG, RauU, WernerJ H. Thin Solid Films, 2005, 480: 67
CrossRef Google scholar
[13]
Abou-RasD, KostorzG, BremaudD, KälinM, KurdesauFV, TiwariAN, DöbeliM. Thin Solid Films, 2005, 480: 433
CrossRef Google scholar
[14]
LinY C, HsiehY T, LaiC M, HsuH R. Journal of Alloys & Compounds, 2017, 661: 168
CrossRef Google scholar
[15]
LinY C, ShenM T, ChenY L, HsuH R, WuC H. Thin Solid Films, 2014, 570: 166
CrossRef Google scholar
[16]
ZhuX, ZhouZ, WangY, ZhangL, LiA, HuangF. Solar Energy Materials and Solar Cells, 2012, 101: 57
CrossRef Google scholar
[17]
ZhangY, TangF L, XueH T. Physica E: Low-dimensional Systems and Nanostructures, 2015, 66: 342
CrossRef Google scholar
[18]
TongayS, ZhouJ, AtacaC, LoK, MatthewsT S, LiJ B, GrossmanJ C, WuJ Q. Nano Letters, 2012, 12: 5576
CrossRef Google scholar
[19]
BökerT, MüllerA, AugustinJ, JanowitzC, ManzkeR. Physical Review B, 1999, 60: 4675
CrossRef Google scholar
[20]
ZhangY, ChangT R, ZhouB, CuiY T, YanH, LiuZ. Nature Nanotechnology, 2014, 9: 111
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/