Effect of MoSe2 on the performance of CIGS solar cells

Hao-yu Sun , Peng-hai Li , Yu-ming Xue , Zai-xiang Qiao , Liu Sai

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 428 -434.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 428 -434. DOI: 10.1007/s11801-019-9027-z
Article

Effect of MoSe2 on the performance of CIGS solar cells

Author information +
History +
PDF

Abstract

A CuIn1-xGaxSe2 (CIGS) thin film solar cell model with MoSe2 transition layer was established, using SCAPS-1D software. The influence of MoSe2 interface layer formed between absorption layer CIGS and the back contact Mo on the solar cell performance was investigated. By changing the doping concentration, thickness and bandgap of MoSe2 layer, it is found that the MoSe2 and the variation of parameters have a significant effect on the electrical characteristics and photovoltaic parameters of CIGS thin film solar cells. Based on the energy band, the interfaces of Mo/MoSe2 and MoSe2/CIGS are analyzed. It is considered that Mo/MoSe2 is a Schottky contact, MoSe2/CIGS is an ohmic contact. When suitable parameters of MoSe2 layer are formed into the interface, it will provide a new path for designing CIGS solar cells with thinner absorption layer.

Cite this article

Download citation ▾
Hao-yu Sun, Peng-hai Li, Yu-ming Xue, Zai-xiang Qiao, Liu Sai. Effect of MoSe2 on the performance of CIGS solar cells. Optoelectronics Letters, 2019, 15(6): 428-434 DOI:10.1007/s11801-019-9027-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JacksonP, WuerzR, HariskosD, LotterE, WitteW, PowallaM. Physica Status Solidi (RRL) — Rapid Research Letters, 2016, 10: 583

[2]

AssmannL, BernèdeJ C. Applied Surface Science, 2005, 246: 159

[3]

KoharaN, NishiwakS, HashimotoY, NegamiT, WadaT. Solar Energy Materials & Solar Cells, 2001, 67: 209

[4]

Ahamed E. M. K. I., Matin M. A. and Amin N., Modeling and Simulation of Highly Efficient Ultrathin CIGS Solar Cell with MoSe2 Tunnel, 4th International Conference on Advances in Electrical Engineering, 681 (2017).

[5]

NishiwakiS, KoharaN, NegamiT. Thin Solid Films, 1997, 485: 118

[6]

FriendR H, YoffeA D. Advances in Physics, 1987, 36: 1

[7]

MoustafaM, ZandtT, JanowitzC. Physical Review B, 2009, 80: 1132

[8]

Eftekhari, Ali. Applied Materials Today, 2017, 8: 1

[9]

BurgelmanM, DecockK, KhelifiS, AbassA. Thin Solid Films, 2013, 535: 296

[10]

BurgelmanM, NolletP, DegraveS. Thin Solid Films, 2000, 361: 527

[11]

JehlZ, ErfurthF, NaghaviN, LombezL, GerardI, BouttemyM, Tran-VanP, EtcheberryA, VoorwindenG, DimmlerB, WischmannW, PowallaM, GuillemolesJF, LincotD. Thin Solid Films, 2001, 519: 7212

[12]

RostanP J, MattheisJ, BilgerG, RauU, WernerJ H. Thin Solid Films, 2005, 480: 67

[13]

Abou-RasD, KostorzG, BremaudD, KälinM, KurdesauFV, TiwariAN, DöbeliM. Thin Solid Films, 2005, 480: 433

[14]

LinY C, HsiehY T, LaiC M, HsuH R. Journal of Alloys & Compounds, 2017, 661: 168

[15]

LinY C, ShenM T, ChenY L, HsuH R, WuC H. Thin Solid Films, 2014, 570: 166

[16]

ZhuX, ZhouZ, WangY, ZhangL, LiA, HuangF. Solar Energy Materials and Solar Cells, 2012, 101: 57

[17]

ZhangY, TangF L, XueH T. Physica E: Low-dimensional Systems and Nanostructures, 2015, 66: 342

[18]

TongayS, ZhouJ, AtacaC, LoK, MatthewsT S, LiJ B, GrossmanJ C, WuJ Q. Nano Letters, 2012, 12: 5576

[19]

BökerT, MüllerA, AugustinJ, JanowitzC, ManzkeR. Physical Review B, 1999, 60: 4675

[20]

ZhangY, ChangT R, ZhouB, CuiY T, YanH, LiuZ. Nature Nanotechnology, 2014, 9: 111

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/