Study on sputtering Zn(O,S) buffer layers for eco-friendly Cu(In,Ga)Se2 solar cells

Si-han Shi, Yu Fan, Zhi-chao He, Zhi-qiang Zhou, Fang-fang Liu, Yi Zhang, An-dong Tang, Yun Sun, Wei Liu

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 435-438.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 435-438. DOI: 10.1007/s11801-019-9016-2
Article

Study on sputtering Zn(O,S) buffer layers for eco-friendly Cu(In,Ga)Se2 solar cells

Author information +
History +

Abstract

An eco-friendly Zn(O,S) film with a wider band gap is emerging as one of the promising Cd-free replacement material, which can be deposited by radio frequency sputtering. The effect of sputtering pressure on the Zn(O,S) films properties and the devices performance are studied systematically. At high pressure, the ZnS phase is found in the Zn(O,S) films resulting in a higher barrier at Zn(O,S) /CIGS interface which would lead to a low recombination activation energy (Ea). By reducing sputtering pressure, single phase of Zn(O,S) films are conducive to carrier transport as well as promote the films electric properties, ultimately improving the performance of Zn(O,S)/CIGS solar cells.

Cite this article

Download citation ▾
Si-han Shi, Yu Fan, Zhi-chao He, Zhi-qiang Zhou, Fang-fang Liu, Yi Zhang, An-dong Tang, Yun Sun, Wei Liu. Study on sputtering Zn(O,S) buffer layers for eco-friendly Cu(In,Ga)Se2 solar cells. Optoelectronics Letters, 2019, 15(6): 435‒438 https://doi.org/10.1007/s11801-019-9016-2

References

[1]
KatoT, WuJ L, HiraiY, SugimotoH, BermudezV. IEEE Journal of Photovoltaics, 2019, 9: 325
CrossRef Google scholar
[2]
JacksonP, WuerzR, HariskosD, LotterE, WitteW, PowallaM. Physica status solidi (RRL)-Rapid Research Letters, 2016, 10: 583
CrossRef Google scholar
[3]
FriedlmeierT M, JacksonP, Kreikemeyer-LorenzoD, HauschildD, KiowskiO, HariskosD, WeinhardtL, HeskeC, PowallaM. A Closer Look at Initial Cds Growth on High-Efficiency Cu(In, Ga)Se2 Absorbers Using Surface-Sensitive Methods, 43rd IEEE Photovoltaic Specialists Conference, 2016, 0457
[4]
WitteW, SpieringS, HariskosD. Vakuum in Forschung und Praxis, 2014, 26: 23
CrossRef Google scholar
[5]
FriedlmeierT M, JacksonP, BauerA, HariskosD, KiowskiO, WuerzR, PowallaM. IEEE Journal of Photovoltaics, 2015, 5: 1487
CrossRef Google scholar
[6]
HariskosD, JacksonP, HempelW, PaetelS, SpieringS, MennerR, WischmannW, PowallaM. IEEE Journal of Photovoltaics, 2016, 6: 1321
CrossRef Google scholar
[7]
KlenkR, SteigertA, RissomT, GreinerD, KaufmannC A, UnoldT, Lux-SteinerM C. Progress in Photovoltaics: Research and Applications, 2014, 22: 161
CrossRef Google scholar
[8]
BuffièreM, HarelS, Guillot-DeudonC, ArzelL, BarreauN, KesslerJ. Physica Status Solidi (a), 2015, 212: 282
CrossRef Google scholar
[9]
FrijtersC H, PoodtP, IlliberiA. Solar Energy Materials and Solar Cells, 2016, 155: 356
CrossRef Google scholar
[10]
ChoiJ H, JungS H, ChungC W. Journal Nanosci Nanotechnol, 2016, 16: 5378
CrossRef Google scholar
[11]
ŞenayV, PatS, Korkmaz, AydoğmuşT, ElmasS, ÖzenS, EkemN, BalbağM Z. Applied Surface Science, 2014, 318: 2
CrossRef Google scholar
[12]
SharbatiS, SitesJ R. IEEE Journal of photovoltaics, 2014, 4: 697
CrossRef Google scholar
[13]
GrimmA, KievenD, KlenkR, LauermannI, NeisserA, NiesenT, PalmJ. Thin Solid Films, 2011, 520: 1330
CrossRef Google scholar
[14]
LinS, LiuW, ChenC, FanY, LiG M, ZhangY X, ZhouZ Q, HeQ, SunY. 43rd IEEE Photovoltaic Specialists Conference, 2016, 0382
[15]
PanH L, YangT, YaoB, DengR, SuiR Y, GaoL L, ShenD Z. Applied Surface Science, 2010, 256: 4621
CrossRef Google scholar
[16]
SongT, McGoffinJ T, SitesJ R. IEEE Journal of Photovoltaics, 2014, 4: 942
CrossRef Google scholar
[17]
KlenkR, GerhardtP, LauermannI, SteigertA, StoberF, HergertF, Lux-SteinerM C. Design, Preparation and Performance of Cu(In,Ga)(S,Se)2 / Zn(O, S) / ZnOAl Solar Cells, 2013, 0853
[18]
JasenekA, RauU, NadenauV, SchockH W. Journal of Applied Physics, 2000, 87: 594
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/