Achieving high-performance phosphorescent organic light-emitting diodes using thermally activated delayed fluorescence with low concentration

Jun-tao Hu , Chao-chao Lu , Peng Wang , Jie Li , Kai Xu , Xiang-hua Wang

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (5) : 347 -351.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (5) : 347 -351. DOI: 10.1007/s11801-019-9010-8
Article

Achieving high-performance phosphorescent organic light-emitting diodes using thermally activated delayed fluorescence with low concentration

Author information +
History +
PDF

Abstract

We fabricated phosphorescent organic light-emitting diodes (PhOLEDs) using thermally activated delayed fluorescence (TADF) material 10,10′-(4,4′-sulfonylbis(4,1-phenylene)) bis(9,9-dimethyl-9,10-dihydroacridine) (DMAC-DPS) with low concentration, which showed better performance compared with 1,3-bis(carbazole-9-yl) benzene (mCP) based devices. When the concentration of DMAC-DPS was 1wt%, the driving voltage of the device was only 3.3 V at 1 000 cd/m2, and the efficiency and lifetime of the device were effectively improved compared with those of mCP based devices. The result indicated that DMAC-DPS could effectively improve the performance of phosphorescent devices. We believe that the better device performance can be attributed to the optimization of the energy transfer process in the emitter layer and lifetime of triplet excitons by DMAC-DPS. The study may provide a simple and effective strategy to achieve high-performance OLEDs.

Cite this article

Download citation ▾
Jun-tao Hu, Chao-chao Lu, Peng Wang, Jie Li, Kai Xu, Xiang-hua Wang. Achieving high-performance phosphorescent organic light-emitting diodes using thermally activated delayed fluorescence with low concentration. Optoelectronics Letters, 2019, 15(5): 347-351 DOI:10.1007/s11801-019-9010-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LeeJ, ChenH F, BatagodaT, CoburnC, DjurovichP I, ThompsonM E, ForrestS R. Nature Mater., 2016, 15: 92

[2]

KamtekarK T, MonkmanA P, BryceM R. Adv. Mater., 2010, 22: 572

[3]

ChibaT, PuY-J, MiyazakiR, NakayamaK-i, SasabeH, KidoJ. Organic Electronics, 2011, 12: 710

[4]

By Vicki CleaveG Y, BarnyP L, RichardN T, FriendH. Adv. Mater., 1999, 11: 285

[5]

KimT-Y, MoonD-G. Synthetic Metals, 2010, 160: 675

[6]

KawamuraY, GoushiK, BrooksJ, BrownJ J, SasabeH, AdachiC. Applied Physics Letters, 2005, 86: 071104

[7]

MondalE, HungW-Y, DaiH-C, WongK-T. Advanced Functional Materials, 2013, 23: 3096

[8]

SeoJ-A, GongM S, LeeJ Y. Organic Electronics, 2014, 15: 1843

[9]

CaoH, SunH, YinY, WenX, ShanG, SuZ, ZhongR, XieW, LiP, ZhuD. Journal of Materials Chemistry C, 2014, 2: 2150

[10]

JeonW S, ParkT J, KimS Y, PodeR, JangJ, KwonJ H. Organic Electronics, 2009, 10: 240

[11]

HuJ, HuS, LuC, HuangY, XuK, WangX. Optical Materials, 2018, 75: 513

[12]

ZhangD, CaiM, ZhangY, ZhangD, DuanL. ACS Appl. Mater. Interfaces, 2015, 7: 28693

[13]

WangS, ZhangY, ChenW, WeiJ, LiuY, WangY. Chem. Commun. (Camb.), 2015, 51: 11972

[14]

ZhangD, DuanL, ZhangD, QiuY. J. Mater. Chem. C, 2014, 2: 8983

[15]

ChaS J, ChoY R, SuhM C. Synthetic Metals, 2015, 200: 143

[16]

XuT, ZhangY X, WangB, HuangC C, MurtazaI, MengH, LiaoL S. ACS Appl. Mater. Interfaces, 2017, 9: 2701

[17]

LeeJ-H, ChengS-H, YooS-J, ShinH, ChangJ-H, WuC-I, WongK-T, KimJ-J. Advanced Functional Materials, 2015, 25: 361

[18]

ParkJ S, JeonW S, YuJ H, PodeR, KwonJ H. Thin Solid Films, 2011, 519: 3259

[19]

ZhangQ, LiB, HuangS, NomuraH, TanakaH, AdachiC. Nature Photonics, 2014, 8: 326

[20]

ReinekeS, WalzerK, LeoK. Physical Review B, 2007, 75: 125328

[21]

XuT, ZhouJ G, HuangC C, ZhangL, FungM K, MurtazaI, MengH, LiaoL S. ACS Appl. Mater. Interfaces, 2017, 9: 10955

[22]

SongW, LeeI H, HwangS-H, LeeJ Y. Organic Electronics, 2015, 23: 138

[23]

HeimelP, MondalA, MayF, KowalskyW, LennartzC, AndrienkoD, LovrincicR. Nature Commun., 2018, 9: 4990

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/