Conversion efficiency of strained type-II core/shell quantum dot solar cell

Mei-wen Meng, Lei Shi

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (5) : 343-346.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (5) : 343-346. DOI: 10.1007/s11801-019-9009-1
Article

Conversion efficiency of strained type-II core/shell quantum dot solar cell

Author information +
History +

Abstract

In this study, the conversion efficiency (CE) of a core/shell quantum dot (QD) with type-II structure is studied by the detailed balance model. In particular, a size dependent strain effect caused by the lattice mismatch is considered since the CE under the detailed balance model is strongly dependent on the band gap of materials. The results show that the strain effect has a very important influence on the CE, and the multiple exction generation (MEG) can significantly increase the CE, so it must be considered in such a low-dimensional system.

Cite this article

Download citation ▾
Mei-wen Meng, Lei Shi. Conversion efficiency of strained type-II core/shell quantum dot solar cell. Optoelectronics Letters, 2019, 15(5): 343‒346 https://doi.org/10.1007/s11801-019-9009-1

References

[1]
WuY C, AsryanL V. J. Appl. Phys., 2016, 120: 084302
CrossRef Google scholar
[2]
DanaJ, MaitiS, TripathiV S, GhoshH N. Chem.-Eur. J., 2018, 24: 2418
CrossRef Google scholar
[3]
KusumaJ, BalakrishnaR G. Sol. Energy, 2018, 159: 682
CrossRef Google scholar
[4]
ShockleyW, QueisserH J. J. Appl. Phys., 1961, 32: 510
CrossRef Google scholar
[5]
ZhangX, SharmaP. Phys. Rev. B, 2005, 72: 195345
CrossRef Google scholar
[6]
ChafaiA, DujardinF, EssaoudiI, AinaneA. Superlattices Microstruct., 2017, 101: 40
CrossRef Google scholar
[7]
RockenbergerJ, TrögerL, RogachA L, TischerM, GrundmannM, EychmüllerA, WellerH. J. Chem. Phys., 1998, 108: 7807
CrossRef Google scholar
[8]
El-YadriM, AghoutaneN, FeddiE, DujardinF. Superlattices Microstruct., 2017, 102: 382
CrossRef Google scholar
[9]
PishehaH S, GheshlaghiN, ÜnlüH. Physica E., 2017, 85: 334
CrossRef Google scholar
[10]
ParviziR. Physica B, 2016, 482: 51
CrossRef Google scholar
[11]
YangX F, ChenX S, FuL Y. Nanoscale Res. Lett., 2008, 3: 534
CrossRef Google scholar
[12]
WagnerJ M, BechstedtF. Phys. Rev. B, 2002, 66: 115202
CrossRef Google scholar
[13]
SchulzS, CaroM A, TanL T, ParbrookP J, MartinR W, O’ReillyE P. Appl. Phys. Express, 2013, 6: 121001
CrossRef Google scholar
[14]
WuJ C, ZhengJ W, ZacherlC L, WuP, LiuZ K, XuR. J. Chem. Phys. C, 2011, 115: 19741
CrossRef Google scholar
[15]
BrendelR, WernerJ H, QueisserH J. Sol. Energy Mater. Sol. Cells, 1996, 41/42: 419
CrossRef Google scholar
[16]
WernerJ H, KolodinskiS, QueisserH J. Phys. Rev. Lett., 1994, 72: 3851
CrossRef Google scholar
[17]
SahinM. J. Phys.: Condens. Matter, 2018, 30: 205301
[18]
AdachiS. Handbook on Physical Properties of Semiconductors, 2004, US, Springer

Accesses

Citations

Detail

Sections
Recommended

/