Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique

Md. Mottaleb Hosen, A. K. M. Atique Ullah, Md. Mahbubul Haque, S. M. Abdur Rahim, K. M. Abdus Sobahan, M. N. I. Khan

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (5) : 356-359.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (5) : 356-359. DOI: 10.1007/s11801-019-9006-4
Article

Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique

Author information +
History +

Abstract

Indium tin oxide (ITO) thin film was deposited on glass substrate by means of vacuum evaporation technique and annealed at 200 °C, 300 °C and 400 °C in air for 1 h. The characterization and properties of the deposited film samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-VIS-NIR spectroscopy techniques. From the XRD patterns, it was found that the deposited thin film was of crystalline at an annealing temperature of 400 °C. The crystalline phase was indexed as cubic structure with lattice constant and crystallite size of 0.511 nm and 40 nm, respectively. The SEM images showed that the films exhibited uniform surface morphology with well-defined spherical grains. The optical transmittance of ITO thin film annealed at 400 °C was improved from 44% to 84% in the wavelength range from 250 nm to 2 100 nm and an optical band gap was measured as 3.86 eV. Hall effect measurement was used to measure the resistivity and conductivity of the prepared film.

Cite this article

Download citation ▾
Md. Mottaleb Hosen, A. K. M. Atique Ullah, Md. Mahbubul Haque, S. M. Abdur Rahim, K. M. Abdus Sobahan, M. N. I. Khan. Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique. Optoelectronics Letters, 2019, 15(5): 356‒359 https://doi.org/10.1007/s11801-019-9006-4

References

[1]
TouškováJ, KovandaJ, PařízekV, KielarP. Solar Energy Materials and Solar Cells, 1995, 37: 357
CrossRef Google scholar
[2]
HambergI, GranqvistC G, BerggrenK-F, SerneliusB E, EngstromL. Vacuum, 1998, 35: 207
CrossRef Google scholar
[3]
RomeoA, TerheggenM, Abou-RasD, BatznerD L, HaungF-J, KalinM, RudmanD, TiwariA N. Progress in Thin-film Solar Cells, 2004, 12: 93
[4]
PoznyakS K, GolubevA N, KulakA I. Surface Science, 2000, 454: 396
CrossRef Google scholar
[5]
KarimunnesaS, Atique UllahA K M, HasanM R, ShantaF S, IslamR, KhanM N I. Journal of Magnetism and Magnetic Materials, 2018, 457: 57
CrossRef Google scholar
[6]
Atique UllahA K M, HossainA, AkterM, KabirM F, KhanM N I, Fazle KibriaA K M, FirozS H. Materials Letters, 2019, 238: 151
CrossRef Google scholar
[7]
KulkarniA K, SchulzK H, LimT-S, KhanM. Thin Solid Films, 1997, 308-309: 1
CrossRef Google scholar
[8]
HambergI, GrangvistC G. Journal of Applied Physics, 1986, 60: R123
CrossRef Google scholar
[9]
AntonyA, NishaM, ManojR, JayarajM K. Applied Surface Science, 2004, 225: 295
CrossRef Google scholar
[10]
VeithM, BubelC, ZimmerM. Dalton Trans, 2011, 40: 6028
CrossRef Google scholar
[11]
Atique UllahA K M, Fazle KibriaA K M, AkterM, KhanM N I, MaksudM A, JahanR A, FirozS H. Journal of Saudi Chemical Society, 2017, 21: 822
CrossRef Google scholar
[12]
ThomasR, DubeD C, KamalasananM N, ChandraS. Thin Solid Films, 1999, 346: 212
CrossRef Google scholar
[13]
KulkarniA K, KnickerbockerS A. Thin Solid Films, 1992, 220: 321
CrossRef Google scholar
[14]
FallahH R, GhasemiM, HassanzadehA. Physica E: Low-dimensional Systems and Nanostructures, 2007, 39: 69
CrossRef Google scholar
[15]
KoseogluH, TurkogluF, KurtM, YamanM D, AkcaF G, GulnurAygun, OzyuzerL. Vacuum, 2015, 120: 8
CrossRef Google scholar
[16]
SofiA H, ShahM A, AsokanK. Journal of Electronic Materials, 2018, 47: 1344
CrossRef Google scholar
[17]
ThirumoorthiM, PrakashJ T J. Journal of Asian Ceramic Societies, 2016, 4: 124
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/