Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique

Md. Mottaleb Hosen , A. K. M. Atique Ullah , Md. Mahbubul Haque , S. M. Abdur Rahim , K. M. Abdus Sobahan , M. N. I. Khan

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (5) : 356 -359.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (5) : 356 -359. DOI: 10.1007/s11801-019-9006-4
Article

Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique

Author information +
History +
PDF

Abstract

Indium tin oxide (ITO) thin film was deposited on glass substrate by means of vacuum evaporation technique and annealed at 200 °C, 300 °C and 400 °C in air for 1 h. The characterization and properties of the deposited film samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-VIS-NIR spectroscopy techniques. From the XRD patterns, it was found that the deposited thin film was of crystalline at an annealing temperature of 400 °C. The crystalline phase was indexed as cubic structure with lattice constant and crystallite size of 0.511 nm and 40 nm, respectively. The SEM images showed that the films exhibited uniform surface morphology with well-defined spherical grains. The optical transmittance of ITO thin film annealed at 400 °C was improved from 44% to 84% in the wavelength range from 250 nm to 2 100 nm and an optical band gap was measured as 3.86 eV. Hall effect measurement was used to measure the resistivity and conductivity of the prepared film.

Cite this article

Download citation ▾
Md. Mottaleb Hosen, A. K. M. Atique Ullah, Md. Mahbubul Haque, S. M. Abdur Rahim, K. M. Abdus Sobahan, M. N. I. Khan. Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique. Optoelectronics Letters, 2019, 15(5): 356-359 DOI:10.1007/s11801-019-9006-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TouškováJ, KovandaJ, PařízekV, KielarP. Solar Energy Materials and Solar Cells, 1995, 37: 357

[2]

HambergI, GranqvistC G, BerggrenK-F, SerneliusB E, EngstromL. Vacuum, 1998, 35: 207

[3]

RomeoA, TerheggenM, Abou-RasD, BatznerD L, HaungF-J, KalinM, RudmanD, TiwariA N. Progress in Thin-film Solar Cells, 2004, 12: 93

[4]

PoznyakS K, GolubevA N, KulakA I. Surface Science, 2000, 454: 396

[5]

KarimunnesaS, Atique UllahA K M, HasanM R, ShantaF S, IslamR, KhanM N I. Journal of Magnetism and Magnetic Materials, 2018, 457: 57

[6]

Atique UllahA K M, HossainA, AkterM, KabirM F, KhanM N I, Fazle KibriaA K M, FirozS H. Materials Letters, 2019, 238: 151

[7]

KulkarniA K, SchulzK H, LimT-S, KhanM. Thin Solid Films, 1997, 308-309: 1

[8]

HambergI, GrangvistC G. Journal of Applied Physics, 1986, 60: R123

[9]

AntonyA, NishaM, ManojR, JayarajM K. Applied Surface Science, 2004, 225: 295

[10]

VeithM, BubelC, ZimmerM. Dalton Trans, 2011, 40: 6028

[11]

Atique UllahA K M, Fazle KibriaA K M, AkterM, KhanM N I, MaksudM A, JahanR A, FirozS H. Journal of Saudi Chemical Society, 2017, 21: 822

[12]

ThomasR, DubeD C, KamalasananM N, ChandraS. Thin Solid Films, 1999, 346: 212

[13]

KulkarniA K, KnickerbockerS A. Thin Solid Films, 1992, 220: 321

[14]

FallahH R, GhasemiM, HassanzadehA. Physica E: Low-dimensional Systems and Nanostructures, 2007, 39: 69

[15]

KoseogluH, TurkogluF, KurtM, YamanM D, AkcaF G, GulnurAygun, OzyuzerL. Vacuum, 2015, 120: 8

[16]

SofiA H, ShahM A, AsokanK. Journal of Electronic Materials, 2018, 47: 1344

[17]

ThirumoorthiM, PrakashJ T J. Journal of Asian Ceramic Societies, 2016, 4: 124

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/