Fiber laser twist sensor with hybrid few-mode tilt Bragg grating and few-mode long period grating

Kang Yang , Yan-ge Liu , Zhi Wang , Guo-yu Li , Ya Han , Hong-wei Zhang , Bai-wei Mao

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (3) : 161 -164.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (3) : 161 -164. DOI: 10.1007/s11801-019-8207-1
Article

Fiber laser twist sensor with hybrid few-mode tilt Bragg grating and few-mode long period grating

Author information +
History +
PDF

Abstract

A twist sensor with hybrid few-mode tilted fiber Bragg grating (FM-TFBG) and few-mode long period grating (FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is used for sensing. The transverse modes at 1 553.9 nm and 1 550.5 nm are LP01 and LP21 core modes, respectively, which are coupled from forward-propagating LP11 core mode. These two excitation wavelengths have opposite variation tendencies, which participate in sensing. The twist sensitivity of 0.16 dB/° from -40° to 40° is achieved. The proposed sensor has potentially used for structure monitoring in many areas.

Cite this article

Download citation ▾
Kang Yang, Yan-ge Liu, Zhi Wang, Guo-yu Li, Ya Han, Hong-wei Zhang, Bai-wei Mao. Fiber laser twist sensor with hybrid few-mode tilt Bragg grating and few-mode long period grating. Optoelectronics Letters, 2019, 15(3): 161-164 DOI:10.1007/s11801-019-8207-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RuiyaL, YiyangC, YuegangT, ZudeZ, TianliangL, JianM. Sensors (Basel), 2018, 18: 1607

[2]

WeijiaB, QiangzhouR, FengyiC, XueguangQ. Opt. Express, 2018, 26: 8619

[3]

WanjunH, YunyunH, ChaoyanC, YukeL, TuanG, Bai-OuG. Sensors and Actuators B: Chemical, 2018, 264: 440

[4]

XuantungP, JinhaiS, TaoC, RuizeW, LiheY, HoujunC, XunH. Journal of Applied Physics, 2018, 123: 174501

[5]

XuanyuZ, ChaoC, YongsenY, WeihuaW, QiG, YongyiC, XingZ, LiQ, YongqiangN, HongboS. IEEE Photonics Journal, 2018, 10: 7100308

[6]

TuanG. Journal of Lightwave Technology, 2017, 35: 3323

[7]

ChenX, DuF, GuoT. Journal of Lightwave Technology, 2017, 35: 3347

[8]

Laxmeshwar LataS, Jadhav MangeshS, Akki JyotiF, RaikarP, RaikarU S. Optics & Laser Technology, 2018, 105: 45

[9]

TuanG, FuL, BaiouG. Opt Express, 2014, 22: 7330

[10]

CięszczykS, HarasimD, KisałaP. Sensors and Actuators A: Physical, 2018, 272: 18

[11]

XuejunZ, ZeW, FuL, QiangqiangF, XiaoyongC, JianX, ZhaochuanZ, YunyunH, YongT, TuanG, JacquesA. Biomed Opt Express, 2018, 9: 1735

[12]

ZexuL, ChangyuS, YikeX, JiaqiG, JianfengW, TingtingL, ChunliuZ, ChangqingH, YongxingJ, XinyongD, YangZ, ZhenguoJ, WeiP, YuliyaS. Journal of the Optical Society of America B, 2018, 35: 1282

[13]

TuanG, Hwa-YawT, Peter AK, JacquesA. Opt. Express, 2009, 17: 5736

[14]

LiyangS, JacquesA. Opt. Lett., 2010, 35: 1034

[15]

Li-YangS, AlbaneL, MateuszS, PredragM, Wojtek JB, JacquesA. Optics Communications, 2010, 283: 2690

[16]

Arregui Francisco Javier, Xiao Hai, Zhang Xuping, Dong Liquan, Li Yu, Gong Xiaojing, Guo Xiaohua, Li Zhihui, Yuan Huiying, Wang Jigang and Zeng Jie, SPIE 10618, 106180B-1 (2018).

[17]

RuishanC, JinghaoW, XiaoqiangZ, AntingW, HaiM, FangL, DickC, QiwenZ. Opt. Lett., 2018, 43: 755

[18]

JacquesA, LiyangS, ChristopheC. Laser Photonics Rev., 2012, 7: 1

[19]

YaH, Yan-GeL, ZhiW, WeiH, LeiC, Hong-WeiZ, KangY. Nanophotonics, 2018, 7: 287

[20]

UlrichR, SimonA. Applied Optics, 1979, 18: 2241

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/