Final optics damage online inspection in high power laser facility*

Fu-peng Wei, Feng-dong Chen, Jun Tang, Zhi-tao Peng, Guo-dong Liu

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 306-311.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 306-311. DOI: 10.1007/s11801-019-8193-3
Article

Final optics damage online inspection in high power laser facility*

Author information +
History +

Abstract

For the laser-induced damage (LID) in large-aperture final optics, we present a novel approach of damage online inspection and its experimental system, which solves two problems: classification of true and false LID and size measurement of the LID. We first analyze the imaging principle of the experimental system for the true and false damage sites, then use kernel-based extreme learning machine (K-ELM) to distinguish them, and finally propose hierarchical kernel extreme learning machine (HK-ELM) to predict the damage size. The experimental results show that the classification accuracy is higher than 95%, the mean relative error of the predicted LID size is within 10%. So the proposed method meets the technical requirements for the damage online inspection.

Cite this article

Download citation ▾
Fu-peng Wei, Feng-dong Chen, Jun Tang, Zhi-tao Peng, Guo-dong Liu. Final optics damage online inspection in high power laser facility*. Optoelectronics Letters, 2019, 15(4): 306‒311 https://doi.org/10.1007/s11801-019-8193-3

References

[1]
SpaethM L, ManesK R, BowersM, CelliersP. Fusion Science & Technology, 2016, 69: 366
CrossRef Google scholar
[2]
DenisV, BeauV, LacampagneL, ChiesT, JulienX, BordenaveE, LacombeC, SozetM, VermerschS, AiriauJ-P. SPIE, 2018, 10525: 1052503
[3]
FengB, LuL, LiuH, SuR, LvZ. 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies, 2014, 9280: 9
[4]
AbdullaG M, KegelmeyerL M, LiaoZ M, CarrW. SPIE, 2010, 7842: 78421D
[5]
KegelmeyerA C L, LiaoZ M, AbdullaG, CrossD, KegelmeyerW P, RavizzaF, CarrC W. Laser-Induced Damage in Optical Materials, 2008, 7132: 713210
[6]
LiaoZ M, AbdullaG M, NegresR A, CrossD A, CarrC W. Opt. Express, 2012, 20: 15569
CrossRef Google scholar
[7]
KegelmeyerL M, SenecalJ G, ConderA D, LaneL A, NostrandM C, WhitmanP K. ICALEPCS, 2013, 2013: 5
[8]
WeiF, ChenF, LiuB, PengZ, TangJ, ZhuQ, HuD, XiangY, LiuN, SunZ, LiuG. Opt. Eng., 2018, 57: 11
[9]
ErsoyO K. Diffraction, Fourier Optics and Imaging, 2006, Hoboken, New Jersey, NJ USA, John Wiley & Sons, Inc.
[10]
KegelmeyerL M, FongP W, GlennS M, LiebmanJ A. Applications of Digital Image Processing XXX, 2007, 6696: 66962H
CrossRef Google scholar
[11]
LiuG, WeiF, ChenF, PengZ, TangJ. Pattern Recognition and Computer Vision, 2018, 11256: 237
CrossRef Google scholar
[12]
HuangG B, ZhouH, DingX, ZhangR. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42: 513
CrossRef Google scholar
[13]
HeB, SunT, YanT, ShenY, NianR. Multidimensional Systems and Signal Processing, 2017, 28: 1051
CrossRef Google scholar
[14]
HuangG B. Cognitive Computation, 2014, 6: 376
CrossRef Google scholar
[15]
TangJ, DengC, HuangG B. IEEE Transactions on Neural Networks & Learning Systems, 2015, 27: 809
CrossRef Google scholar
[16]
HuangG B. Cognitive Computation, 2015, 7: 263
CrossRef Google scholar
[17]
BeckA, TeboulleM. SIAM Journal on Imaging Sciences, 2009, 2: 183
CrossRef Google scholar
[18]
ConderA, ChangJ, KegelmeyerL, SpaethM, WhitmanP. SPIE, 2010, 7797: 77970P

Accesses

Citations

Detail

Sections
Recommended

/