Final optics damage online inspection in high power laser facility*

Fu-peng Wei , Feng-dong Chen , Jun Tang , Zhi-tao Peng , Guo-dong Liu

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 306 -311.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 306 -311. DOI: 10.1007/s11801-019-8193-3
Article

Final optics damage online inspection in high power laser facility*

Author information +
History +
PDF

Abstract

For the laser-induced damage (LID) in large-aperture final optics, we present a novel approach of damage online inspection and its experimental system, which solves two problems: classification of true and false LID and size measurement of the LID. We first analyze the imaging principle of the experimental system for the true and false damage sites, then use kernel-based extreme learning machine (K-ELM) to distinguish them, and finally propose hierarchical kernel extreme learning machine (HK-ELM) to predict the damage size. The experimental results show that the classification accuracy is higher than 95%, the mean relative error of the predicted LID size is within 10%. So the proposed method meets the technical requirements for the damage online inspection.

Cite this article

Download citation ▾
Fu-peng Wei, Feng-dong Chen, Jun Tang, Zhi-tao Peng, Guo-dong Liu. Final optics damage online inspection in high power laser facility*. Optoelectronics Letters, 2019, 15(4): 306-311 DOI:10.1007/s11801-019-8193-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SpaethM L, ManesK R, BowersM, CelliersP. Fusion Science & Technology, 2016, 69: 366

[2]

DenisV, BeauV, LacampagneL, ChiesT, JulienX, BordenaveE, LacombeC, SozetM, VermerschS, AiriauJ-P. SPIE, 2018, 10525: 1052503

[3]

FengB, LuL, LiuH, SuR, LvZ. 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies, 2014, 9280: 9

[4]

AbdullaG M, KegelmeyerL M, LiaoZ M, CarrW. SPIE, 2010, 7842: 78421D

[5]

KegelmeyerA C L, LiaoZ M, AbdullaG, CrossD, KegelmeyerW P, RavizzaF, CarrC W. Laser-Induced Damage in Optical Materials, 2008, 7132: 713210

[6]

LiaoZ M, AbdullaG M, NegresR A, CrossD A, CarrC W. Opt. Express, 2012, 20: 15569

[7]

KegelmeyerL M, SenecalJ G, ConderA D, LaneL A, NostrandM C, WhitmanP K. ICALEPCS, 2013, 2013: 5

[8]

WeiF, ChenF, LiuB, PengZ, TangJ, ZhuQ, HuD, XiangY, LiuN, SunZ, LiuG. Opt. Eng., 2018, 57: 11

[9]

ErsoyO K. Diffraction, Fourier Optics and Imaging, 2006, Hoboken, New Jersey, NJ USA, John Wiley & Sons, Inc.

[10]

KegelmeyerL M, FongP W, GlennS M, LiebmanJ A. Applications of Digital Image Processing XXX, 2007, 6696: 66962H

[11]

LiuG, WeiF, ChenF, PengZ, TangJ. Pattern Recognition and Computer Vision, 2018, 11256: 237

[12]

HuangG B, ZhouH, DingX, ZhangR. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42: 513

[13]

HeB, SunT, YanT, ShenY, NianR. Multidimensional Systems and Signal Processing, 2017, 28: 1051

[14]

HuangG B. Cognitive Computation, 2014, 6: 376

[15]

TangJ, DengC, HuangG B. IEEE Transactions on Neural Networks & Learning Systems, 2015, 27: 809

[16]

HuangG B. Cognitive Computation, 2015, 7: 263

[17]

BeckA, TeboulleM. SIAM Journal on Imaging Sciences, 2009, 2: 183

[18]

ConderA, ChangJ, KegelmeyerL, SpaethM, WhitmanP. SPIE, 2010, 7797: 77970P

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/