Fabrication of sapphire rib waveguides using a femtosecond laser

Jue Wang, Qing Tao, Chen Hu, Zhong-sheng Zhai, Jian Cheng, Dun Liu

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (3) : 190-194.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (3) : 190-194. DOI: 10.1007/s11801-019-8180-8
Article

Fabrication of sapphire rib waveguides using a femtosecond laser

Author information +
History +

Abstract

We demonstrate a method for fabricating sapphire rib waveguides with femtosecond laser micromachining technology. Finite difference beam propagation method (FD-BPM) is applied to design sapphire rib waveguides. We explore the process of etching on a sapphire substrate surface via direct laser ablation. Rib waveguides that satisfies the dimensions of our design were fabricated. Actual light propagation performance is tested, and with the cut-back method, the insertion loss of 2.9±0.5 dB/cm is measured.

Cite this article

Download citation ▾
Jue Wang, Qing Tao, Chen Hu, Zhong-sheng Zhai, Jian Cheng, Dun Liu. Fabrication of sapphire rib waveguides using a femtosecond laser. Optoelectronics Letters, 2019, 15(3): 190‒194 https://doi.org/10.1007/s11801-019-8180-8

References

[1]
KurlovV N. Sapphire: Properties, Growth, and Applications, 2016, Oxford, Elsevier
[2]
HunspergerR G. Integrated Optics: Theory and Technology, Springer, 1984,
CrossRef Google scholar
[3]
MillerS E. Bell System Technical Journal, 1969, 48: 2059
CrossRef Google scholar
[4]
ShiC, ZhangL, HongJ, ZhangF, PanS, HangY. Journal of Synthetic Crystals, 2015, 44: 2652
[5]
BianX, ChenM, LiG. Laser & Optoelectronics Progress, 2016, 53: 051404
CrossRef Google scholar
[6]
ZhixiangC, XunyinG, WeiY, ZhilongS, YumeiY. Laser & Optoelectronics Progress, 2015, 52: 081403
CrossRef Google scholar
[7]
ZhouY, PanG, GongH, ShiX, ZouC. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513: 153
CrossRef Google scholar
[8]
KuoC-T, HsuL-H, HuangB-H, KuoH-C, LinC-C, ChengY-J. Applied Optics, 2016, 55: 7387
CrossRef Google scholar
[9]
WuD, MaP, LiuB, ZhangS, WangJ, LiJ. Journal of Semiconductors, 2016, 37: 104003
CrossRef Google scholar
[10]
KeWC, ChiangCY, SonW, LeeFW. Applied Surface Science, 2018, 456: 967
CrossRef Google scholar
[11]
SchafferC B, BrodeurA, MazurE. Measurement Science and Technology, 2001, 12: 1784
CrossRef Google scholar
[12]
JoglekarA P, LiuH, SpoonerG J, MeyhöferE, MourouG, HuntA J. Applied Physics B, 2003, 77: 25
CrossRef Google scholar
[13]
RickmanA G, ReedG T, NamavarF. Journal of Lightwave Technology, 1994, 12: 1771
CrossRef Google scholar
[14]
HuangC, ZhangG, LiuJ. Journal of Optoelectronics·Laser, 2002, 13: 20
[15]
LadouceurF. Journal of Lightwave Technology, 1997, 15: 1020
CrossRef Google scholar
[16]
ChenK P, LiM J, LiM, GarnerS M, HuangS. Optics Express, 2015, 23: 22532
CrossRef Google scholar
[17]
MelchiorriM, DaldossoN, SbranaF, PavesiL, PuckerG, KompocholisC, BelluttiP, LuiA. Applied Physics Letters, 2005, 86: 121111
CrossRef Google scholar
[18]
DaldossoN, MelchiorriM, RiboliF, GirardiniM, PuckerG, CrivellariM, BelluttiP, LuiA, PavesiL. Journal of Lightwave Technology, 2004, 22: 1734
CrossRef Google scholar
[19]
LongdeW, TongZ, XiaoyangZ, RuozhouL, LuningW. Journal of Southeast University, 2013, 29: 152
[20]
LeeD, YangM, HuangC, DaiJ. IEEE Photonics Technology Letters, 2014, 26: 2107
CrossRef Google scholar
[21]
TianZ, YuZ, LiuB, WangA. Optics Letters, 2016, 41: 195
CrossRef Google scholar
[22]
ZhangB, KahriziM. High-Temperature Bragg Grating Waveguide Sensor, International Conference on MEMS, NANO and Smart Systems, 400, 2003,

Accesses

Citations

Detail

Sections
Recommended

/