Blind denoising for LiDAR signal based on high dimensional eigenvalue analysis

Xian-zhao Xia , Rui Chen , Pin-quan Wang , Yi-qiang Zhao

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 406 -410.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (6) : 406 -410. DOI: 10.1007/s11801-019-8178-2
Article

Blind denoising for LiDAR signal based on high dimensional eigenvalue analysis

Author information +
History +
PDF

Abstract

In this paper, we address the problem of blind denoising for laser detection and ranging equipment (LiDAR) based on estimating noise level from LiDAR pulse echo. We first provide rigorous statistical analysis on the eigenvalue distributions of a sample covariance matrix. Then we propose an interval-bounded estimator for noise variance in high dimensional setting. To this end, an effective blind denoising filtering method for LiDAR is devised based on the adaptive estimation noise level. The estimation performance of our method has been guaranteed both theoretically and empirically. The analysis and experiment results have demonstrated that the proposed algorithm can reliably infer true noise levels, and outperforms the relevant existing methods.

Cite this article

Download citation ▾
Xian-zhao Xia, Rui Chen, Pin-quan Wang, Yi-qiang Zhao. Blind denoising for LiDAR signal based on high dimensional eigenvalue analysis. Optoelectronics Letters, 2019, 15(6): 406-410 DOI:10.1007/s11801-019-8178-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CsabaB, BenceG, BalázsN, ZsoltJ. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28: 101

[2]

KurttiS, NissinenJ, KostamovaaraJ. IEEE Transactions on Circuits & Systems I Regular Papers, 2017, 64: 550

[3]

Hong-SooC, Chung-HwanK, Sang-GugL. IEEE Transactions on Circuits & Systems I Regular Papers, 2014, 61: 3007

[4]

LiD, JiantaoZ. Estimating Noise Level for Natural Images Based on Scale-Invariant Kurtosis and Piecewise Stationarity, IEEE International Conference on Image Processing IEEE, 2016, 26: 1017

[5]

TatsumiU. Mathieu Fauvel and Nicolas Dobigeon, IEEE Transactions on Geoscience and Remote Sensing, 2018, 56: 4908

[6]

HaoZ, RuiM, MaliangL, ZhangmingZ. IEEE Sensors Journal, 2018, 18: 3114

[7]

Peter M. Roth, Volker Settgast, Peter Widhalm, Marcel Lancelle, Josef Birchbauer, Norbert Brändle, Sven Ha-vemann and Horst Bischof, Next-Generation 3D Visualization for Visual Surveillance, IEEE International Conference on Advanced Video & Signal Based Surveillance IEEE Computer Society, 343 (2011).

[8]

ZhirongZ, DengxinH, YufengW, QingY, ShichunL, YanL, HongweiW. Optics & Lasers in Engineering, 2013, 51: 961

[9]

MaoF, GongW. Optics Express, 2013, 21: 8286

[10]

GuangyongC, FengyuanZ, Pheng AnnH. An Efficient Statistical Method for Image Noise Level Estimation, IEEE International Conference on Computer Vision (ICCV) IEEE Computer Society, 2015,

[11]

WuS, LiuZ, LiuB. Optics Communications, 2006, 267: 137

[12]

BuadesA. Coll Bartomeu and Morel Jean-Michel, SIAM Journal on Multiscale Modeling and Simulation, 2005, 4: 490

[13]

BehnamB, Phillip A. MS, Ming CW, Bernhard EB. IEEE Communications Magazine, 2017, 55: 135

[14]

RémiG, RodolpheJ, FrancisB. IEEE Transactions on Information Theory, 2015, 61: 6298

[15]

JungA, ElderY, GörtzN. IEEE Transactions on Information Theory, 2016, 62: 15013

[16]

Johnstone, IainM. Annals of Statistics, 2001, 29: 2952

[17]

ChianiM. IEEE Transactions on Information Theory, 2017, 1: 99

[18]

Noureddine ElK. Annals of Probability, 2006, 34: 2077

[19]

ZongmingMA. Mathematics, 2008, 18: 322

[20]

MarchenkoV A, PasturL A. Mathematics of the Ussr-Sbornik, 1967, 1: 507

[21]

BaiZ, SilversteinJ. Spectral Analysis of Large Dimensional Random Matrices, 2010,

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/